Tuesday, October 23, 2012
जिज्ञासा(JIGYASA) : आकाश-2
जिज्ञासा(JIGYASA) : आकाश-2: आकाश-2 में एक गीगाहर्त्ज़ का प्रोसेसर, दो घंटे तक चलने वाली बैट्री और एंड्रायड-4 ऑपरेटिंग सिस्टम है। यह टैबलेट एजुकेशन में स्टूडेंट्स के लि...
जिज्ञासा(JIGYASA) : आकाश-2
जिज्ञासा(JIGYASA) : आकाश-2: आकाश-2 में एक गीगाहर्त्ज़ का प्रोसेसर, दो घंटे तक चलने वाली बैट्री और एंड्रायड-4 ऑपरेटिंग सिस्टम है। यह टैबलेट एजुकेशन में स्टूडेंट्स के लि...
जिज्ञासा(JIGYASA) : आकाश-2
जिज्ञासा(JIGYASA) : आकाश-2: आकाश-2 में एक गीगाहर्त्ज़ का प्रोसेसर, दो घंटे तक चलने वाली बैट्री और एंड्रायड-4 ऑपरेटिंग सिस्टम है। यह टैबलेट एजुकेशन में स्टूडेंट्स के लि...
Wednesday, October 17, 2012
जिज्ञासा(JIGYASA) : बात करने वाले एटीएम
जिज्ञासा(JIGYASA) : बात करने वाले एटीएम: 2001 की जनगणना के आंकड़ों के अनुसार, देश में एक करोड़ छह लाख नेत्रज्योति की अक्षमता वाले लोग हैं.एनसीआर कार्पोरेशन के ‘बात करने वाले एटीएम’ ...
Tuesday, October 16, 2012
जिज्ञासा(JIGYASA) : परमाणु संयंत्रों की क्षमता
जिज्ञासा(JIGYASA) : परमाणु संयंत्रों की क्षमता: 4780 मेगावाट स्थापित क्षमता वाले, 20 नाभिकीय विद्युत रिएक्टरों में से वर्तमान में एक रिएक्टर (राजस्थान परमाणु बिजलीघर (आरएपीएस), यूनिट-1...
जिज्ञासा(JIGYASA) : एक व्यक्ति को प्राकृतिक पृष्ठभूमि से प्राप्त व...
जिज्ञासा(JIGYASA) : एक व्यक्ति को प्राकृतिक पृष्ठभूमि से प्राप्त व...: एक व्यक्ति को प्राकृतिक पृष्ठभूमि से प्राप्त विकिरण की औसत मात्रा 2400 माइक्रो-सिवर्ट प्रति वर्ष होती है। भारतीय नाभिकीय विद्युत संयंत्र...
Sunday, October 14, 2012
जिज्ञासा(JIGYASA) : आई एन एस सहयाद्री शिवालिक वर्ग का अंतिम और तीसरा य...
जिज्ञासा(JIGYASA) : आई एन एस सहयाद्री शिवालिक वर्ग का अंतिम और तीसरा य...: आई एन एस सहयाद्री शिवालिक वर्ग का अंतिम और तीसरा युद्ध पोत है। सहयाद्री के पहले आई एन एस शिवालिक को वर्ष 2010 में और आई एन एस सतपुड़ा को वर्...
जिज्ञासा(JIGYASA) : राष्ट्रीय दूरसंचार नीति-2012
जिज्ञासा(JIGYASA) : राष्ट्रीय दूरसंचार नीति-2012: राष्ट्रीय दूरसंचार नीति के प्रमुख क्षेत्र हैं: टेलीफोन सेवाओं के उपयोग का घनत्व वर्तमान 39 से बढ़ाकर 2017 तक 70 और 2020 तक 100 करना. ...
Friday, October 5, 2012
जिज्ञासा(JIGYASA) : लक्ष्य विमान
जिज्ञासा(JIGYASA) : लक्ष्य विमान: पायलट लेस लक्ष्य विमान (पीटीए) एक पुन: प्रयोज्य हवाई लक्ष्य प्रणाली है। लक्ष्य सभी तीन सेवाओं के लिए बंदूक और मिसाइल चालक दल और हवाई रक्षा प...
जिज्ञासा(JIGYASA) : सौर ऊर्जा संयंत्र
जिज्ञासा(JIGYASA) : सौर ऊर्जा संयंत्र: गुजरात में नर्मदा सागर बांध की नहरों की कुल लंबाई 19 हजार किलोमीटर है और अगर इसका दस प्रतिशत भी इस्तेमाल होता है तो 2400 मेगावाट स्वच्छ और स...
Saturday, September 29, 2012
जिज्ञासा(JIGYASA) : जीसैट-10
जिज्ञासा(JIGYASA) : जीसैट-10: संचार उपग्रह जीसैट-10 को फ्रेंच गुयाना से यूरोपीय उपग्रह प्रक्षेपण रॉकेट एरियन-5 के जरिये सफलतापूर्वक प्रक्षेपित कर दिया गया.जीसैट-10 करीब ...
Saturday, September 15, 2012
पोलियो
जिज्ञासा(JIGYASA) : पोलियो: भारत ने 13 जनवरी 2012 को एक बड़ी सफलता हासिल की, जब पिछले 12 महीनों के दौरान पोलियो का कोई भी नया मामला दर्ज नहीं किया गया। 13 जनवरी, 201...
Friday, September 14, 2012
जिज्ञासा(JIGYASA) : राष्ट्रीय जलनीति -2012
जिज्ञासा(JIGYASA) : राष्ट्रीय जलनीति -2012: राष्ट्रीय जलनीति -2012 में बड़े-बड़े बांधों की पुरजोर वकालत की गई है। नए संशोधित मसौदे में अप्रत्यक्ष रूप से निजीकरण की बात कही गई है। नए सं...
Wednesday, September 12, 2012
जिज्ञासा(JIGYASA) : भारत में इंटरनेट की शुरुआत 15 अगस्त 1995 को वीएसएन...
जिज्ञासा(JIGYASA) : भारत में इंटरनेट की शुरुआत 15 अगस्त 1995 को वीएसएन...: ट्राई के मुताबिक भारत में एक करोड़ 40 लाख ब्रॉडबैंड कनेक्शन हैं। अमेरिका जैसे देशों में कुल आबादी के मुकाबले ब्रॉडबैंड कनेक्शन का अनुपात 35...
Thursday, July 12, 2012
वर्ष 2011 में विश्व जनसंख्या 7 बिलियन को पार करने का अनुमान था। यूएनएफपीए (युक्त राष्ट्र जनसंख्या कोष) और इसके सहयोगियों ने इसी दिन एक अभियान चलाया जिसे नाम दिया गया ''7 बिलियन एक्सन्स’’। वर्ष 2011 के मध्य तक नवीनतम आकड़ों के मुताबिक विश्व जनसंख्या 6,928,198,253 होने का अनुमान था।
1987 में 5 बिलियन लोगों ने 11 जुलाई को विश्व जनसंख्या दिवस के रूप में प्रतिष्ठित करने का निर्णय लिया था। अब 20 साल से अधिक समय से यह दिन जनसंख्या के रूख तथा इससे संबंधित मुद्दों के महत्व को दर्शाने का अवसर बन गया है। विचार-विमर्शों तथा चर्चाओं के माध्यम से इसके प्रति सजगता व्यक्त की जाती है। इस दिवस ने वार्षिक महत्व ग्रहण कर लिया है। वर्ष 2011 में विश्व जनसंख्या 7 बिलियन को पार करने का अनुमान था। यूएनएफपीए (युक्त राष्ट्र जनसंख्या कोष) और इसके सहयोगियों ने इसी दिन एक अभियान चलाया जिसे नाम दिया गया ''7 बिलियन एक्सन्स’’। वर्ष 2011 के मध्य तक नवीनतम आकड़ों के मुताबिक विश्व जनसंख्या 6,928,198,253 होने का अनुमान था।
मुख्य चिंता जनसंख्या को स्थिर करना है। जनसंख्या स्थिरता केवल संख्या न होकर संतुलित विकास है। इसे वृहद सामाजिक-आर्थिक विकास के परिप्रेक्ष्य में देखा जाना चाहिए। जरूरी नहीं कि स्थिरता की यह प्रक्रिया 2045 तक पूरी हो जाए, इसे 2050 या 2060 तक भी पूरा किया जा सकता है। सबसे बड़ी चिंता यह है कि हम जनसंख्या स्थिरता के मुद्दे तक कैसे पहुंचे।
हर कोई जनसंख्या स्थिरता को लेकर चिंतित है क्योंकि इसके साक्ष्य मौजूद हैं कि महिलाएं अधिक बच्चे नहीं चाहती हैं। परिवार को सीमित करना अब उनकी प्राथमिकता है। वह अपने परिवेश में मौजूद परिस्थितियों से अपने आप को सशक्त बना रही हैं। वह चाहती हैं कि उनके बच्चे जीवित रहें और अच्छा करें। साथ ही परिवार नियोजन के तरीके तथा प्रजनन संबंधी स्वास्थ्य सुविधाएं भी उन्हें आसानी से मिलें। ये सब सुविधाएं उनकी निजता और मर्यादा को बनाए रख कर ही प्राप्त हों। उनकी आय में वृद्धि के उपाय किये जाएं तथा आय पर उनका नियंत्रण सुनिश्चित किया जाए जिससे काफी तब्दीली आएगी।
विश्व रिपोर्ट में पश्चिम अफ्रीकी देश नाईजर का उल्लेख किया गया है जहां पिछले 30 वर्षों में जीवन की प्रत्याशा बढ़ी है लेकिन प्रत्येक 20 वर्षों में इसकी जनसंख्या दुगनी हुई है। वर्ष 2050 तक इसकी कुल प्रजनन दर (टीएफआर) में 3.9 प्रतिशत की गिरावट आएगी जो एक सकारात्मक रूख को दर्शाता है। वर्ष 2050 तक जनसंख्या 15.5 से बढ़कर 55.5 मिलियन हो जाएगी। भविष्य में नाईजर में भी जनसंख्या वृद्धि खाद्य और आवश्यक वस्तुओं के उत्पादन से अधिक होने की संभावना है।
रिपोर्ट के अंत में यह चेतावनी दी गई है कि : ''पृथ्वी पर इतनी अधिक जनसंख्या कभी नहीं थी। इसकी खपत का स्तर अप्रत्याशित है और पर्यावरण में काफी बड़े परिवर्तन भी हो रहे हैं। हमें यह चुनना होगा कि हम संसाधनों का समतामूलक उपयोग करें या इस बारे में कुछ भी न करें और ऐसा करते हुए हम आर्थिक और पर्यावरण की उत्तरोत्तर बढ़ती समस्याओं की गर्त में समाकर, अधिक असमान और असह्य भविष्य की ओर बढ़ते चले जाएं’’।
चिनाब नदी पर विश्व का सबसे लंबा रेल पुल बनाया जा रहा...
जम्मू-कश्मीर के रियासी जिले में चिनाब नदी पर विश्व का सबसे लंबा रेल पुल बनाया जा रहा है। रेल मंत्रालय के अधीन एक सार्वजनिक उपक्रम कोंकण रेलवे कारपोरेशन लिमिटेड (केआरसीएल) इसके निर्माणकार्य में जुटा है। वर्ष 2016 तक इसका निर्माणकार्य पूरा होने की संभावना है। यह पुल उधमपुर-श्रीनगर-बारामुला रेल संपर्क (यूएसबीआरएल) परियोजना पर होगा, जो कश्मीर की मनोरम घाटी को रेल संपर्क उपलब्ध कराने के लिए एक राष्ट्रीय परियोजना है। कोंकण रेलवे ने दिसंबर 2002 में कटरा से लेकर धरम तक यूएसबीआरएल परियोजना के एक हिस्से के निर्माणकार्य को अपने हाथ में लिया है। चिनाब पुल संभवत: एक सबसे अधिक चुनौतीपूर्ण परियोजना है क्योंकि इसका निर्माण 359 मीटर की ऊंचाई तक होना है (कुतुब मीनार की ऊंचाई 72 मीटर है और एफिल टावर की ऊंचाई 324 मीटर है)। चिनाब पुल का मध्यवर्ती विस्तार 457 मीटर है। निर्माणकार्य पूरा होने के बाद यह पुल नदी तल से सबसे ऊँचा रेल पुल हो जायेगा। इस समय विश्व का सबसे ऊँचा रेल पुल फ्रांस की टैम नदी पर बना है, जिसका सबसे ऊँचा पीलर 340 मीटर का है, जबकि इस पर जहां रेलगाड़ी चलती है उसकी वास्तविक ऊँचाई 300 मीटर है। इस पुल का डिजाइन इस प्रकार तैयार किया गया है ताकि यह आंधी के झोंके को सहन कर सके। इस पुल की यह विशेषता अंतर्राष्ट्रीय तौर पर अद्वितीय है। इस पुल की पेंटिंग 35 वर्ष के लिए की जाती है और 120 वर्ष के इसके जीवनकाल में केवल तीन बार पेंटिंग करने की जरूरत होगी।
Monday, April 30, 2012
2001 की जनगणना के अनुसार भारत में वृद्धों की संख्या सात करोड़ सत्तर लाख है जबकि 1961 में उनकी संख्या केवल दो करोड़ चालीस लाख थी। 1981 में यह बढ़कर चार करोड़ तीस लाख हो गई और सन् 91 में ये पाँच करोड़ सत्तर लाख तक पहुंच गई। भारत की आबादी में वृद्ध लोगों का अनुपात 1961 में 5.63 प्रतिशत से बढ़कर वर्ष 2001 तक 7.5 प्रतिशत हो गया और 2025 तक यह 12 प्रतिशत तक हो जाने की संभावना है। सत्तर साल से अधिक आयु के वृद्ध जनों की संख्या जहां 1961 में अस्सी लाख थी वहीं वर्ष 2001 में यह बढ़कर दो करोड़ नब्बे लाख हो गई। भारतीय जनसंख्या के आंकड़े के अनुसार 1961 में शताब्दी पूरा करने वालों की संख्या 99 हज़ार दर्ज की गई, वहां 1991 में ये बढ़कर एक लाख अड़तीस हज़ार हो गई...
2001 की जनगणना के अनुसार भारत में वृद्धों की संख्या सात करोड़ सत्तर लाख है जबकि 1961 में उनकी संख्या केवल दो करोड़ चालीस लाख थी। 1981 में यह बढ़कर चार करोड़ तीस लाख हो गई और सन् 91 में ये पाँच करोड़ सत्तर लाख तक पहुंच गई। भारत की आबादी में वृद्ध लोगों का अनुपात 1961 में 5.63 प्रतिशत से बढ़कर वर्ष 2001 तक 7.5 प्रतिशत हो गया और 2025 तक यह 12 प्रतिशत तक हो जाने की संभावना है। सत्तर साल से अधिक आयु के वृद्ध जनों की संख्या जहां 1961 में अस्सी लाख थी वहीं वर्ष 2001 में यह बढ़कर दो करोड़ नब्बे लाख हो गई। भारतीय जनसंख्या के आंकड़े के अनुसार 1961 में शताब्दी पूरा करने वालों की संख्या 99 हज़ार दर्ज की गई, वहां 1991 में ये बढ़कर एक लाख अड़तीस हज़ार हो गई।
भारत में 21 शताब्दी के पहले मध्य में आयु संबंधी परिदृश्य के आकलन के लिए अगले पचास वर्षों में वृद्धों की संख्या अनुमानित की गयी है। भारत के साठ और उससे अधिक आयु के वृद्धों की संख्या 2001 में 7 करोड़ 70 लाख से बढ़कर वर्ष 2031 में एक अरब 7 करोड़ 90 लाख पहुंच जाने की संभावना है और वर्ष 2051 तक 3 अरब 10 लाख तक पहुंचने का अनुमान लगाया गया है। 70 साल से अधिक आयु के लोगों की संख्या में वर्ष 2001 से 2051 के बीच पाँच गुणा वृद्धि का अनुमान लगाया गया है।
समाज में स्वास्थ्य संबंधी समस्याएं चिंता की वजह है क्योंकि वृद्ध लोगों को युवाओं की अपेक्षा खराब स्वास्थ्य का सामना करना पड़ता है। शारीरिक बीमारी के अलावा अधिक आयु के लोगों को मानसिक स्वास्थ्य संबंधी समस्याओं से पीड़ित होने की भी संभावना रहती है। अध्ययन से पता चला है कि अधिक आयु के लोग ज्यादातर खांसी से पीड़ित रहते हैं। (बीमारियों के अंतर्राष्ट्रीय वर्गीकरण के अनुसार ये टीबी, फेफड़े की सूजन, दमा, काली खांसी इत्यादि से जुड़ी खांसी होती है)। कमजोर दृष्टि, शरीर में रक्त की अल्पता और दाँत संबंधी समस्याओं से भी वे जूझते हैं। अधिक आयु होने से वृद्ध लोगों में बीमारी बढ़़ने और बिस्तर पकड़ लेने का अनुपात बढ़ता पाया गया है। शारीरिक अक्षमताओं में दृष्टि दोष और श्रवण शक्ति खत्म होना प्रमुख है।
भारत में 21 शताब्दी के पहले मध्य में आयु संबंधी परिदृश्य के आकलन के लिए अगले पचास वर्षों में वृद्धों की संख्या अनुमानित की गयी है। भारत के साठ और उससे अधिक आयु के वृद्धों की संख्या 2001 में 7 करोड़ 70 लाख से बढ़कर वर्ष 2031 में एक अरब 7 करोड़ 90 लाख पहुंच जाने की संभावना है और वर्ष 2051 तक 3 अरब 10 लाख तक पहुंचने का अनुमान लगाया गया है। 70 साल से अधिक आयु के लोगों की संख्या में वर्ष 2001 से 2051 के बीच पाँच गुणा वृद्धि का अनुमान लगाया गया है।
समाज में स्वास्थ्य संबंधी समस्याएं चिंता की वजह है क्योंकि वृद्ध लोगों को युवाओं की अपेक्षा खराब स्वास्थ्य का सामना करना पड़ता है। शारीरिक बीमारी के अलावा अधिक आयु के लोगों को मानसिक स्वास्थ्य संबंधी समस्याओं से पीड़ित होने की भी संभावना रहती है। अध्ययन से पता चला है कि अधिक आयु के लोग ज्यादातर खांसी से पीड़ित रहते हैं। (बीमारियों के अंतर्राष्ट्रीय वर्गीकरण के अनुसार ये टीबी, फेफड़े की सूजन, दमा, काली खांसी इत्यादि से जुड़ी खांसी होती है)। कमजोर दृष्टि, शरीर में रक्त की अल्पता और दाँत संबंधी समस्याओं से भी वे जूझते हैं। अधिक आयु होने से वृद्ध लोगों में बीमारी बढ़़ने और बिस्तर पकड़ लेने का अनुपात बढ़ता पाया गया है। शारीरिक अक्षमताओं में दृष्टि दोष और श्रवण शक्ति खत्म होना प्रमुख है।
इस वर्ष 7 अप्रैल को विश्व स्वास्थ्य दिवस मनाया गया, जो बढ़़ती आयु एवं स्वास्थ्य पर आधारित था। इसकी विषयवस्तु गुड हैल्थ ऐड्स लाइफ टू इयर्स थी। अधिकतर देशों में जीवन बढ़ रहा है। इसका मतलब यह है कि वहां लोग अब ज्यादा दिनों तक जिंदा रहते हैं और वह एक ऐसी उम्र में पहुंच रहे हैं, जहां उन्हें स्वास्थ्य सुविधाओं की सर्वाधिक आवश्यकता होती है...
इस वर्ष 7 अप्रैल को विश्व स्वास्थ्य दिवस मनाया गया, जो बढ़़ती आयु एवं स्वास्थ्य पर आधारित था। इसकी विषयवस्तु गुड हैल्थ ऐड्स लाइफ टू इयर्स थी। अधिकतर देशों में जीवन बढ़ रहा है। इसका मतलब यह है कि वहां लोग अब ज्यादा दिनों तक जिंदा रहते हैं और वह एक ऐसी उम्र में पहुंच रहे हैं, जहां उन्हें स्वास्थ्य सुविधाओं की सर्वाधिक आवश्यकता होती है।
मानवीय विकास और ह्रास को हम शैशवकाल, बाल्यकाल, युवावस्था, प्रौढ़ावस्था और वृद्धावस्था के रूप में जानते हैं। शैशवकाल सात वर्षों का, बाल्यकाल 14 वर्षों का, युवावस्था 21, प्रौढ़ावस्था 50 वर्ष तक होती है। इसके बाद वृद्धावस्था का आगमन होता है। जीवन को दो महत्वपूर्ण घटक प्रभावित करते हैं, जिनमें आनुवांशिकता और पर्यावरण शामिल हैं। पर्यावरण की परिस्थितियां जीवन को रोगों आदि के रूप में प्रभावित करती हैं।
विश्व स्वास्थ्य संगठन के अनुसार एक बेहतर स्वास्थ्य प्रणाली के लिए यह आवश्यक है कि वह ठोस निर्णयों एवं नीतियों पर आधारित हो, उसकी वित्तीय व्यवस्था मजबूत हो और बेहतरीन चिकित्सकीय व्यवस्था बनाई गई हो।
देश की अर्थव्यवस्था में स्वास्थ्य सुविधा का महत्वपूर्ण स्थान है। 2008 में तमाम विकसित देशों में सकल घरेलू उत्पाद का औसतन नौ प्रतिशत स्वास्थ्य सुविधा उद्योग पर खर्च किया गया था। अमरीका में इस मद में सकल घरेलू उत्पाद का 16 प्रतिशत, फ्रांस में 11.2 प्रतिशत और स्विट्जरलैंड में 10.7 प्रतिशत खर्च किए जाते हैं।
सामान्य वृद्धावस्था को तय करना बहुत कठिन काम है, क्योंकि एक तरफ जहां शारीरिक बदलाव होते रहते हैं, तो दूसरी तरफ बुढ़ापे की वजह से पुराने रोग सिर उठाने लगते हैं। रोगों से मुक्त वृद्धावस्था की कल्पना करना बहुत कठिन है और इसीलिए यह कहा जाता है कि 'वृद्धावस्था स्वयं एक रोग है'.
कुछ बीमारियां ऐसी हैं, जो वृद्धावस्था में ज्यादा पैदा होती हैं, जैसे मधुमेह, कैंसर, हृदय रोग और किडनी संबंधी रोग। यह बीमारियां शरीर के विभिन्न भागों जैसे किडनी, मस्तिष्क और हृदय को प्रभावित करती हैं।
मानवीय विकास और ह्रास को हम शैशवकाल, बाल्यकाल, युवावस्था, प्रौढ़ावस्था और वृद्धावस्था के रूप में जानते हैं। शैशवकाल सात वर्षों का, बाल्यकाल 14 वर्षों का, युवावस्था 21, प्रौढ़ावस्था 50 वर्ष तक होती है। इसके बाद वृद्धावस्था का आगमन होता है। जीवन को दो महत्वपूर्ण घटक प्रभावित करते हैं, जिनमें आनुवांशिकता और पर्यावरण शामिल हैं। पर्यावरण की परिस्थितियां जीवन को रोगों आदि के रूप में प्रभावित करती हैं।
विश्व स्वास्थ्य संगठन के अनुसार एक बेहतर स्वास्थ्य प्रणाली के लिए यह आवश्यक है कि वह ठोस निर्णयों एवं नीतियों पर आधारित हो, उसकी वित्तीय व्यवस्था मजबूत हो और बेहतरीन चिकित्सकीय व्यवस्था बनाई गई हो।
देश की अर्थव्यवस्था में स्वास्थ्य सुविधा का महत्वपूर्ण स्थान है। 2008 में तमाम विकसित देशों में सकल घरेलू उत्पाद का औसतन नौ प्रतिशत स्वास्थ्य सुविधा उद्योग पर खर्च किया गया था। अमरीका में इस मद में सकल घरेलू उत्पाद का 16 प्रतिशत, फ्रांस में 11.2 प्रतिशत और स्विट्जरलैंड में 10.7 प्रतिशत खर्च किए जाते हैं।
सामान्य वृद्धावस्था को तय करना बहुत कठिन काम है, क्योंकि एक तरफ जहां शारीरिक बदलाव होते रहते हैं, तो दूसरी तरफ बुढ़ापे की वजह से पुराने रोग सिर उठाने लगते हैं। रोगों से मुक्त वृद्धावस्था की कल्पना करना बहुत कठिन है और इसीलिए यह कहा जाता है कि 'वृद्धावस्था स्वयं एक रोग है'.
कुछ बीमारियां ऐसी हैं, जो वृद्धावस्था में ज्यादा पैदा होती हैं, जैसे मधुमेह, कैंसर, हृदय रोग और किडनी संबंधी रोग। यह बीमारियां शरीर के विभिन्न भागों जैसे किडनी, मस्तिष्क और हृदय को प्रभावित करती हैं।
बारहवीं पंचवर्षीय योजना में 90 प्रतिशत सब्सिडी के साथ आरजीजीवीवाई को जारी रखने का प्रस्ताव है। बारहवीं योजना के तहत यह योजना जनसंख्या और गरीबी रेखा से नीचे के परिवारों के अतिरिक्त बाकी सभी बची हुई बस्तियों को समाविष्ट करने का उद्देश्य रखेगी । गरीबी रेखा से नीचे के भार को 40-60 वाट से 250 वाट श्रृंखला तक बढ़ाने और गरीबी रेखा से नीचे के सभी परिवारों को एलईडी प्रदान करने का प्रस्ताव है। बारहवीं पंचवर्षीय योजना में खासतौर पर कृषि हेतु उत्पादक लोड के लिए अलग नवीन योजना का भी प्रस्ताव है...
बारहवीं पंचवर्षीय योजना में 90 प्रतिशत सब्सिडी के साथ आरजीजीवीवाई को जारी रखने का प्रस्ताव है। बारहवीं योजना के तहत यह योजना जनसंख्या और गरीबी रेखा से नीचे के परिवारों के अतिरिक्त बाकी सभी बची हुई बस्तियों को समाविष्ट करने का उद्देश्य रखेगी । गरीबी रेखा से नीचे के भार को 40-60 वाट से 250 वाट श्रृंखला तक बढ़ाने और गरीबी रेखा से नीचे के सभी परिवारों को एलईडी प्रदान करने का प्रस्ताव है। बारहवीं पंचवर्षीय योजना में खासतौर पर कृषि हेतु उत्पादक लोड के लिए अलग नवीन योजना का भी प्रस्ताव है
2001 की जनगणना के अनुसार देश में 1.19 लाख गांवों और 7.80 करोड़ घरों में बिजली नहीं थी। जनसंख्या का एक बड़ा भाग अंधकार में जीवन बसर कर रहा था। इस पृष्ठभूमि में सभी गांवों और बस्तियों के विद्युतीकरण, सभी ग्रामीण परिवारों तक बिजली की पहुंच मुहैया कराने और गरीबी रेखा से नीचे के परिवारों को निःशुल्क बिजली कनेक्शन मुहैया कराने के उद्देश्य के साथ आरजीजीवीवाई की शुरुआत हुई...
2001 की जनगणना के अनुसार देश में 1.19 लाख गांवों और 7.80 करोड़ घरों में बिजली नहीं थी। जनसंख्या का एक बड़ा भाग अंधकार में जीवन बसर कर रहा था। इस पृष्ठभूमि में सभी गांवों और बस्तियों के विद्युतीकरण, सभी ग्रामीण परिवारों तक बिजली की पहुंच मुहैया कराने और गरीबी रेखा से नीचे के परिवारों को निःशुल्क बिजली कनेक्शन मुहैया कराने के उद्देश्य के साथ आरजीजीवीवाई की शुरुआत हुई।
राजीव गांधी ग्रामीण विद्युतीकरण योजना (आरजीजीवीवाई) के अंतर्गत देश भर में 1.10 लाख विद्युतरहित गांवों के विद्युतीकरण और आंशिक रुप से विद्युतीकृत 3,48,987 गांवों के गहन विद्युतीकरण के लिए लक्षित 576 परियोजनाओं को मंजूरी दी गई है। इसके अतिरिक्त आरजीजीवीवाई के द्वितीय चरण के तहत 33 जिलों में तैंतीस परियोजनाओं को भी मंजूरी दी गई है साथ ही द्वितीय चरण में छत्तीस अनुपूरक परियोजनाओं को भी मंजूरी प्रदान की गई है। 22 मार्च 2012 तक 1,03,611 गांवो के विद्युतीकरण और गरीबी रेखा से नीचे के 1.91 करोड़ परिवारों को निःशुल्क बिजली उपलब्ध कराकर भारत निर्माण के निर्धारित लक्ष्य से आगे तक पहुंचा जा चुका है। भारत निर्माण के तहत उन एक लाख विद्युतरहित गांवों के विद्युतीकरण और गरीबी रेखा से नीचे के 1.75 करोड परिवारों को निःशुल्क बिजली कनेक्शन प्रदान करने का लक्ष्य निर्धारित किया गया था। योजना के तहत गरीबी रेखा से नीचे के विद्युत रहित परिवारों के विद्युतीकरण के अलावा कुटीर ज्योति कार्यक्रम के अनुसार गरीबी रेखा से ऊपर के परिवारों के लिए भी प्रावधान है जो अपने घर के लिए कनेक्शन प्राप्त करने हेतु प्रस्तावित कनेक्शन शुल्क का भुगतान कर सकते हैं। नवीन और नवीकरणीय ऊर्जा मंत्रालय उन सुदूर विद्युत रहित गांवों और विद्युतीकृत गांवों की विद्युतरहित इलाकों के प्रकाशायन/बुनियादी विद्युतीकरण के लिए सुदूर ग्रामीण विद्युतीकरण कार्यक्रम का क्रियान्वयन कर रही है जहां राज्य सरकारों के लिए ग्रिड विस्तारण मुमकिन नहीं है अथवा जो आरजीजीवीवाई के तहत नहीं आते।
इस योजना की क्रियान्वयन प्रक्रिया में शुरुआती आधार पर निष्पादन के लिए जिला आधारित विस्तृत परियोजना रिपोर्ट तैयार करना शामिल है। इसके पश्चात केन्द्रीय सार्वजनिक क्षेत्र उपक्रम इसके कार्यान्वयन में शामिल हैं। विद्युतीकृत गांवों के प्रमाणन में ग्राम पंचायत शामिल है।
आरजीजीवीवाई के तहत विद्युतरहित सार्वजनिक स्थानों जैसे- स्कूलों, पंचायत कार्यालयों, सामुदायिक/ स्वास्थ्य देखभाल केन्द्रों, औषधालयों आदि में भी विद्युत कनेक्शन प्रदान किया जाता है। ग्रामीण क्षेत्रों में बिजली प्रदान करने का अर्थ है इन क्षेत्रों का पूर्ण रूपेण विकास जिसमें शिक्षा, स्वास्थ्य देखभाल सुविधाएं, कंप्यूटराइजेशन, दूरसंचार, भूमि रिकॉर्डों की ऑनलाइन पहुंच और कृषि में नवीन तकनीक की सुगमता शामिल है। इसके अलावा बिजली की पंहुच से खादी और ग्रामोद्योग उद्योग को बढ़ावा मिलेगा।
राजीव गांधी ग्रामीण विद्युतीकरण योजना (आरजीजीवीवाई) के अंतर्गत देश भर में 1.10 लाख विद्युतरहित गांवों के विद्युतीकरण और आंशिक रुप से विद्युतीकृत 3,48,987 गांवों के गहन विद्युतीकरण के लिए लक्षित 576 परियोजनाओं को मंजूरी दी गई है। इसके अतिरिक्त आरजीजीवीवाई के द्वितीय चरण के तहत 33 जिलों में तैंतीस परियोजनाओं को भी मंजूरी दी गई है साथ ही द्वितीय चरण में छत्तीस अनुपूरक परियोजनाओं को भी मंजूरी प्रदान की गई है। 22 मार्च 2012 तक 1,03,611 गांवो के विद्युतीकरण और गरीबी रेखा से नीचे के 1.91 करोड़ परिवारों को निःशुल्क बिजली उपलब्ध कराकर भारत निर्माण के निर्धारित लक्ष्य से आगे तक पहुंचा जा चुका है। भारत निर्माण के तहत उन एक लाख विद्युतरहित गांवों के विद्युतीकरण और गरीबी रेखा से नीचे के 1.75 करोड परिवारों को निःशुल्क बिजली कनेक्शन प्रदान करने का लक्ष्य निर्धारित किया गया था। योजना के तहत गरीबी रेखा से नीचे के विद्युत रहित परिवारों के विद्युतीकरण के अलावा कुटीर ज्योति कार्यक्रम के अनुसार गरीबी रेखा से ऊपर के परिवारों के लिए भी प्रावधान है जो अपने घर के लिए कनेक्शन प्राप्त करने हेतु प्रस्तावित कनेक्शन शुल्क का भुगतान कर सकते हैं। नवीन और नवीकरणीय ऊर्जा मंत्रालय उन सुदूर विद्युत रहित गांवों और विद्युतीकृत गांवों की विद्युतरहित इलाकों के प्रकाशायन/बुनियादी विद्युतीकरण के लिए सुदूर ग्रामीण विद्युतीकरण कार्यक्रम का क्रियान्वयन कर रही है जहां राज्य सरकारों के लिए ग्रिड विस्तारण मुमकिन नहीं है अथवा जो आरजीजीवीवाई के तहत नहीं आते।
इस योजना की क्रियान्वयन प्रक्रिया में शुरुआती आधार पर निष्पादन के लिए जिला आधारित विस्तृत परियोजना रिपोर्ट तैयार करना शामिल है। इसके पश्चात केन्द्रीय सार्वजनिक क्षेत्र उपक्रम इसके कार्यान्वयन में शामिल हैं। विद्युतीकृत गांवों के प्रमाणन में ग्राम पंचायत शामिल है।
आरजीजीवीवाई के तहत विद्युतरहित सार्वजनिक स्थानों जैसे- स्कूलों, पंचायत कार्यालयों, सामुदायिक/ स्वास्थ्य देखभाल केन्द्रों, औषधालयों आदि में भी विद्युत कनेक्शन प्रदान किया जाता है। ग्रामीण क्षेत्रों में बिजली प्रदान करने का अर्थ है इन क्षेत्रों का पूर्ण रूपेण विकास जिसमें शिक्षा, स्वास्थ्य देखभाल सुविधाएं, कंप्यूटराइजेशन, दूरसंचार, भूमि रिकॉर्डों की ऑनलाइन पहुंच और कृषि में नवीन तकनीक की सुगमता शामिल है। इसके अलावा बिजली की पंहुच से खादी और ग्रामोद्योग उद्योग को बढ़ावा मिलेगा।
देश में शहरी, पालिका संबंधी और ओद्योगिकी कचरों से 3600 मेगावाट बिजली तैयार करने की संभावना है और वर्ष 2017 तक यह बढ़कर 5200 मेगावाट हो सकती है। शहरी स्थानीय निकायों और सरकार के द्वारा यह परियोजनाएं स्थापित की जा सकती हैं और इसमें निजी क्षेत्र के डेवलपरों की भागेदारी भी हो सकती है। फरवरी 2012 के अंत तक कचरे से कुल मिलाकर शहरी क्षेत्र में 36.20 मेगावाट बिजली और औद्योगिक क्षेत्र में 53.46 मेगावाट ग्रीड आधारित बिजली का उत्पादन किया गया था।
विभिन्न प्रौद्योगिकियों के आधार पर कचरे से ऊर्जा तैयार करने की परियोजनाओं के लिए प्रति मेगावाट लागत अधिक होती है। बायोमिथेन तैयार करने के लिए 6 से 9 करोड़ रुपये के बीच में लागत आती है जबकि गैस तैयार करने और दहन के लिए इसपर 9 से 10 करोड़ रुपये की लागत आती है। हालांकि इस परियोजना के लिए 20 लाख रुपये से लेकर 3 करोड़ रुपये तक वित्तीय सहायता दी जाती है।
देश में शहरी, पालिका संबंधी और ओद्योगिकी कचरों से 3600 मेगावाट बिजली तैयार करने की संभावना है और वर्ष 2017 तक यह बढ़कर 5200 मेगावाट हो सकती है। शहरी स्थानीय निकायों और सरकार के द्वारा यह परियोजनाएं स्थापित की जा सकती हैं और इसमें निजी क्षेत्र के डेवलपरों की भागेदारी भी हो सकती है। फरवरी 2012 के अंत तक कचरे से कुल मिलाकर शहरी क्षेत्र में 36.20 मेगावाट बिजली और औद्योगिक क्षेत्र में 53.46 मेगावाट ग्रीड आधारित बिजली का उत्पादन किया गया था।
देश में शहरी, पालिका संबंधी और ओद्योगिकी कचरों से 3600 मेगावाट बिजली तैयार करने की संभावना है और वर्ष 2017 तक यह बढ़कर 5200 मेगावाट हो सकती है। शहरी स्थानीय निकायों और सरकार के द्वारा यह परियोजनाएं स्थापित की जा सकती हैं और इसमें निजी क्षेत्र के डेवलपरों की भागेदारी भी हो सकती है। फरवरी 2012 के अंत तक कचरे से कुल मिलाकर शहरी क्षेत्र में 36.20 मेगावाट बिजली और औद्योगिक क्षेत्र में 53.46 मेगावाट ग्रीड आधारित बिजली का उत्पादन किया गया था।
ज़्यादातर कचरा जो पैदा होता है वह भूमि को समतल बनाने (लैंडफिल) तथा जल निकायों में चले जाते हैं। अत: इनका सही तरीके से निपटान नहीं होता है तथा यह मिथेन और कार्बन डायओक्साइड जैसी ग्रीन हाउस गैसों के स्रोत बनते हैं। कचरे का निपटान करने से पहले उनको सही ढंग से संसाधित करने तथा उनका ऊर्जा के उत्पादन में इस्तेमाल करने से इस समस्या में सुधार हो सकता है...
ज़्यादातर कचरा जो पैदा होता है वह भूमि को समतल बनाने (लैंडफिल) तथा जल निकायों में चले जाते हैं। अत: इनका सही तरीके से निपटान नहीं होता है तथा यह मिथेन और कार्बन डायओक्साइड जैसी ग्रीन हाउस गैसों के स्रोत बनते हैं। कचरे का निपटान करने से पहले उनको सही ढंग से संसाधित करने तथा उनका ऊर्जा के उत्पादन में इस्तेमाल करने से इस समस्या में सुधार हो सकता है।
इसमें दो स्तरीय दृष्टिकोण अपनाने की ज़रूरत है जिसमें न केवल अपशिष्ट का निपटान पर्यावरण के अनुकूल हो सकेगा बल्कि साथ ही साथ प्रदूषण कम करने और विकास की ज़रूरतों के लिए आवश्यक ऊर्जा का उत्पादन भी हो सकेगा। ऐसी कई पद्धतियां हैं जिससे कचरे के जरिए ऊर्जा का उत्पादन हो सकता है।
सबसे पहला है अवायवीय (ऐनरोबिक) बायजेशन या बायोमिथनेशन। इस पक्रिया में जैविक कचरे को अलग किया जाता है तथा उसे बायो गैस डायजेस्टर में डाला जाता है। मिथेन से संपन्न बायोगैस का उत्पादन करने के लिए अवायवीय स्थितियों में इस कचरे का अपशिष्ट बायोडिग्रेडेशन होता है। इस तरह से पैदा हुर्इ बॉयोगैस का इस्तेमाल खाना पकाने, बिजली पैदा करने आदि में हो सकता है। इस प्रक्रिया के दौरान बने चिपचिपे पदार्थ का इस्तेमाल खाद के रूप में किया जा सकता है।
अगली प्रक्रिया कम्बशन/इन्सिनेरेश है। इस पद्धति में उच्च तापमान पर ( लगभग 800 सी) कचरे को औक्सीजन की प्राचुर्य मात्रा में सीधे रूप से जलाया जाता है। इससे जैविक पदार्थ के ऊष्म तत्व 65-80 प्रतिशत तक गरम हवा, भाप तथा गरम पानी में तब्दील होते हैं। इसक जरिए पैदा हुई भाप का इस्तेमाल स्टीम टर्बाइन में बिजली पैदा करने के लिए हो सकता है।
पायरॉलिसिस/गैसिफिकेशन एक अन्य प्रक्रिया है जिसमें जैविक पदार्थों का ऊष्म के जरिए रायासनिक अपघटन होता है। जैविक पदार्थ को हवा की अनुपस्थिति या हवा की सीमित मात्रा में तब तक गरम किया जाता हे जब तक कि उनका गैस के छोटे मॉलिक्यूल में अपघटन न हो जाएं ( जिसे सम्मिलित रूप से सिनगैस कहते हैं )। उत्पादित गैस को प्रोड़यूसर गैस कहते हैं जिसमें कार्बन मानोक्साइड (25 प्रतिशत), हाइड्रोजन तथा हाइड्रोकार्बन(15 प्रतिशत), कार्बन डायोक्साइड और नाइट्रोजन (15 प्रतिशत) गैस सम्मिलित होती हैं। बिजली पैदा करने के लिए प्रोड्यूसर गैस को इंटरनल कम्बशन जेनरेटर सेट या टर्बाइन में जलाया जाता है।
इसमें दो स्तरीय दृष्टिकोण अपनाने की ज़रूरत है जिसमें न केवल अपशिष्ट का निपटान पर्यावरण के अनुकूल हो सकेगा बल्कि साथ ही साथ प्रदूषण कम करने और विकास की ज़रूरतों के लिए आवश्यक ऊर्जा का उत्पादन भी हो सकेगा। ऐसी कई पद्धतियां हैं जिससे कचरे के जरिए ऊर्जा का उत्पादन हो सकता है।
सबसे पहला है अवायवीय (ऐनरोबिक) बायजेशन या बायोमिथनेशन। इस पक्रिया में जैविक कचरे को अलग किया जाता है तथा उसे बायो गैस डायजेस्टर में डाला जाता है। मिथेन से संपन्न बायोगैस का उत्पादन करने के लिए अवायवीय स्थितियों में इस कचरे का अपशिष्ट बायोडिग्रेडेशन होता है। इस तरह से पैदा हुर्इ बॉयोगैस का इस्तेमाल खाना पकाने, बिजली पैदा करने आदि में हो सकता है। इस प्रक्रिया के दौरान बने चिपचिपे पदार्थ का इस्तेमाल खाद के रूप में किया जा सकता है।
अगली प्रक्रिया कम्बशन/इन्सिनेरेश है। इस पद्धति में उच्च तापमान पर ( लगभग 800 सी) कचरे को औक्सीजन की प्राचुर्य मात्रा में सीधे रूप से जलाया जाता है। इससे जैविक पदार्थ के ऊष्म तत्व 65-80 प्रतिशत तक गरम हवा, भाप तथा गरम पानी में तब्दील होते हैं। इसक जरिए पैदा हुई भाप का इस्तेमाल स्टीम टर्बाइन में बिजली पैदा करने के लिए हो सकता है।
पायरॉलिसिस/गैसिफिकेशन एक अन्य प्रक्रिया है जिसमें जैविक पदार्थों का ऊष्म के जरिए रायासनिक अपघटन होता है। जैविक पदार्थ को हवा की अनुपस्थिति या हवा की सीमित मात्रा में तब तक गरम किया जाता हे जब तक कि उनका गैस के छोटे मॉलिक्यूल में अपघटन न हो जाएं ( जिसे सम्मिलित रूप से सिनगैस कहते हैं )। उत्पादित गैस को प्रोड़यूसर गैस कहते हैं जिसमें कार्बन मानोक्साइड (25 प्रतिशत), हाइड्रोजन तथा हाइड्रोकार्बन(15 प्रतिशत), कार्बन डायोक्साइड और नाइट्रोजन (15 प्रतिशत) गैस सम्मिलित होती हैं। बिजली पैदा करने के लिए प्रोड्यूसर गैस को इंटरनल कम्बशन जेनरेटर सेट या टर्बाइन में जलाया जाता है।
नैनो प्रौद्योगिकी
नैनो प्रौद्योगिकी ज्ञान का भंडार है और ऐसी प्रौद्योगिकी है, जो विभिन्न प्रकार के उत्पादों और प्रक्रियाओं को प्रभावित करेगी। इसके राष्ट्रीय अर्थव्यवस्था और विकास के लिए दूरगामी परिणाम होंगे। विज्ञान और प्रौद्योगिकी विभाग (डीएसटी) ने पिछले कुछ समय में कई पहल शुरू की हैं और नैनो उनमें से एक थी। डीएसटी ने नैनो विज्ञान के क्षेत्र में 2001 में नैनो विज्ञान एवं प्रौद्योगिकी पहल (एनआईएसटी) नामक एक आदर्श कार्यक्रम शुरू किया था। नैनो मिशन इसी कार्यक्रम का अनुगामी है। सरकार ने सन् 2007 में पांच वर्ष के लिए एक हजार करोड़ रुपये के आवंटन के साथ इसे नैनो मिशन के रूप में मंजूर किया था। नैनो मिशन की इस प्रकार संरचना की गई है कि यह इस क्षेत्र में विभिन्न एजेंसियों के राष्ट्रीय अनुसंधान संबंधी प्रयासों के बीच तालमेल स्थापित कर सके और जोरदार ढंग से नये कार्यक्रम शुरू कर सके। आज भारत वैज्ञानिक प्रकाशनों की दृष्टि से विश्व के छठे देश के रूप में उभरा है। इस प्रकार लगभग एक हजार अनुसंधान कर्ताओं का एक सक्रिय अनुसंधान समाज तैयार हो गया है। इसके अलावा कुछ रुचिकर प्रयोग भी सामने आए हैं।
नैनो मिशन के लिए अनुसंधान का क्षमता निर्माण सर्वाधिक महत्वपूर्ण है, ताकि भारत विश्व में ज्ञान के केन्द्र के रूप में उभर सके। बड़ी संख्या में लोग नैनो विज्ञान के अनुसंधान और मूलभूत पहलुओं तथा प्रशिक्षण की ओर आकर्षित हो रहे हैं। नैनो मिशन राष्ट्रीय विकास विशेष रूप से स्वच्छ पेयजल, सामग्री विकास, संवेदक विकास आदि जैसे राष्ट्रीय महत्व के क्षेत्र में उत्पादों और प्रक्रियाओं के विकास के लिए भी संघर्ष कर रहा है। नैनो मिशन के उद्देश्यों में मूलभूत अनुसंधान का प्रोत्साहन, संरचना विकास, नैनो प्रयोग और प्रौद्योगिकी विकास, मानव संसाधन विकास और राष्ट्रीय सहयोग शामिल हैं।
वैज्ञानिकों द्वारा अपने तौर पर और / या वैज्ञानिकों के समूह द्वारा किये जा रहे, मूलभूत अनुसंधान के लिए वित्तीय सहायता दी जाएगी। पदार्थ की मूलभूत समझ पैदा करने के लिए अध्ययन/अनुसंधान करने वाले श्रेष्ठता के केन्द्र तैयार किये जाएंगे, जो नैनो स्तर पर नियंत्रण और परिचालन करेंगे।
अनुसंधान के लिए संरचना
विभिन्न गतिविधियों के लिए आवश्यक महंगे और आधुनिक उपकरणों की साझी सुविधाओं की एक शृंखला देश के विभिन्न केन्द्रों में स्थापित की जाएगी। ऑप्टिकल ट्वीजर, नैनो इन्डेन्टर, ट्रांसमिशन इलैक्ट्रॉन माईक्रोस्कोप, एटोमिक फोर्स माईक्रोस्कोप, स्कैनिंग टनलिंग माईक्रोस्कोप, मैट्रिक्स असिस्टेड लेज़र डिजोर्पशन टार्इम ऑफ फ्लाइट मास स्पैक्ट्रोमीटर, माईक्रोअरे स्पॉटर और स्कैनर आदि की नैनो के स्तर पर जांच अनुसंधान की जरूरत है।
नैनो अनुप्रयोग और प्रौद्योगिकी विकास कार्यक्रम
उत्पाद और यंत्र विकसित करने के लिए नैनो अनुप्रयोग एवं प्रौद्योगिकी विकास कार्यक्रम को उत्प्रेरित करने के लिए मिशन का प्रस्ताव है कि अनुप्रयोगोन्मुख अनुसंधान और विकास परियोजनाओं को प्रोत्साहित किया जाए, नैनो अनुप्रयोग और प्रौद्योगिकी विकास केन्द्र स्थापित किये जाएं और नैनो प्रौद्योगिकी कारोबार इन्क्यूबेटर आदि खोले जाएं । इस मिशन में औद्योगिक क्षेत्र का सीधे अथवा जन – निजी भागीदारी उद्यमों के जरिए सहयोग लिया जा रहा है।
मानव संसाधन विकास
यह मिशन विभिन्न क्षेत्रों में अनुसंधानकर्ताओं और व्यावसायियों को कारगर शिक्षा और प्रशिक्षण उपलब्ध करने पर ध्यान केन्द्रित करेगा ताकि नैनो स्तर के विज्ञान , इंजीनियरी और प्रौद्योगिकी के लिए वास्तविक अंत: - अनुशासी संस्कृति तैयार हो सके। इससे कला और विज्ञान के स्नातकोत्तर कार्यक्रम लाभान्वित होंगे। इस क्षेत्र में राष्ट्रीय और समुद्र – पारीय पीएचडी के बाद की फेलोशिप, विश्वविद्यालयों में चेयर की स्थापना अन्य पहलू हैं।
नैनो मिशन का नैनो मिशन परिषद द्वारा संचालन किया जा रहा है। तकनीकी कार्यक्रम नैनो विज्ञान परामर्शदात्री समूह (एनएसएजी) और नैनो अनुप्रयोग एवं प्रौद्योगिकी परामर्शदात्री समूह (एनएटीएजी) नामक दो सलाहकार समूह द्वारा संचालित किये जा रहे हैं। विज्ञान और प्रौद्योगिकी विभाग ने नैनो विज्ञान और प्रौद्योगिकी विभिन्न गतिविधियों में सहायता प्रदान की है।
वैज्ञानिकों की अनुसंधान और विकास परियोजनाओं के लिए सहायता की गई है। चिकित्सकीय कार्यों के लिए विस्तृत प्रौद्योगिकियां विकसित की गई हैं। चितिन / चितोसन जेल का इस्तेमाल करते हुए घावों को ठीक करने के लिए मेम्बरेन स्केफोल्ड और आंखों में दवाई डालने के लिए नैनो कणों का कोच्चि स्थित अम़ृता इन्स्टीट्यूट ऑफ मेडीकल साइंसेस और हैदराबाद स्थित सेन्टर फॉर सेलुलर एंड मोलिक्यूलर बायोलॉजी तथा मुम्बई स्थित यूएसवी ने क्रमश: विकास किया है। नैनो स्तर की प्रणाली के आधारभूत वैज्ञानिक पहलुओं पर काम कर रहे वैज्ञानिकों के लिए लगभग 130 परियोजनाओं की सहायता की गई है। कई परियोजनाओं में सेमी कंडक्टर नैनो क्रिकेटल्स पर विस्तृत अध्ययन का काम शुरू किया गया है। चूंकि सेमी – कंडक्टर कण ऊर्जा के अंतर के उतार –चढ़ाव और आंखों के गुणों में तदनुरूप परिवर्तन जैसे आकार संबंधी विशेषताओं को प्रदशित करते हैं , इसलिए उन्हें तकनीकी रूप से महत्वपूण सामग्री समझा जाता है। एकल भित्ति कार्बन नैनोट्यूब (एसडब्ल्यूएनटी) बंडलों के मेट पर विभिन्न तरल पदार्थों और गैसों का बहाव विद्युत संकेत पैदा करते हैं। इस आविष्कार के कई महत्वपूर्ण निहितार्थ हैं। तरल पदार्थ संबंधी सूक्ष्म यंत्रों के विकास का जैव प्रौद्योगिकी, औषध उद्योग, डरग डिलिवरी निमौनीया, सूचना प्रौद्योगिकी आदि क्षेत्रों में कई परिणाम होंगे।
डीएसटी ने आधुनिक उपकरणों के कई केन्द्र स्थापित किये हैं, ताकि अनुसंधानकर्ता नैनो स्तर की प्रणाली पर काम कर सकें। समूचे देश में स्थापित करने के लिए नैनो विज्ञान की 11 इकाइयों / मुख्य समुहों को मंजूरी दी गई है। उनमें क्षेत्र के अन्य वैज्ञानिकों के साथ विचारों का आदान प्रदान करने के लिए कुछ अधिक आधुनिक सुविधाएं उपलब्ध हैं। इससे नैनो –स्केल प्रणाली पर विकेन्द्रीकृत तरीके से वैज्ञानिक अनुसंधान को प्रोत्साहित किया जा सकेगा। विशिष्ट अनुप्रयोग के विकास पर केन्द्रित नैनों प्रौद्योगिकी के सात केन्द्र और कम्प्यूटेशनल सामग्री में श्रेष्ठता का एक केन्द्र भी स्थापित किया गया है। विभिन्न देशों के साथ अनुसंधान और विकास की गतिविधियां चलाई जा रही हैं। मानव संसाधन विकास के लिए डीएसटी ने उद्योग से संबद्ध संयुक्त संस्था परियोजनाओं और सार्वजनिक – निजी भागीदारी की कुछ अन्य गतिविधियों को भी प्रोत्साहित किया गया है।
नैनो मिशन के लिए अनुसंधान का क्षमता निर्माण सर्वाधिक महत्वपूर्ण है, ताकि भारत विश्व में ज्ञान के केन्द्र के रूप में उभर सके। बड़ी संख्या में लोग नैनो विज्ञान के अनुसंधान और मूलभूत पहलुओं तथा प्रशिक्षण की ओर आकर्षित हो रहे हैं। नैनो मिशन राष्ट्रीय विकास विशेष रूप से स्वच्छ पेयजल, सामग्री विकास, संवेदक विकास आदि जैसे राष्ट्रीय महत्व के क्षेत्र में उत्पादों और प्रक्रियाओं के विकास के लिए भी संघर्ष कर रहा है। नैनो मिशन के उद्देश्यों में मूलभूत अनुसंधान का प्रोत्साहन, संरचना विकास, नैनो प्रयोग और प्रौद्योगिकी विकास, मानव संसाधन विकास और राष्ट्रीय सहयोग शामिल हैं।
वैज्ञानिकों द्वारा अपने तौर पर और / या वैज्ञानिकों के समूह द्वारा किये जा रहे, मूलभूत अनुसंधान के लिए वित्तीय सहायता दी जाएगी। पदार्थ की मूलभूत समझ पैदा करने के लिए अध्ययन/अनुसंधान करने वाले श्रेष्ठता के केन्द्र तैयार किये जाएंगे, जो नैनो स्तर पर नियंत्रण और परिचालन करेंगे।
अनुसंधान के लिए संरचना
विभिन्न गतिविधियों के लिए आवश्यक महंगे और आधुनिक उपकरणों की साझी सुविधाओं की एक शृंखला देश के विभिन्न केन्द्रों में स्थापित की जाएगी। ऑप्टिकल ट्वीजर, नैनो इन्डेन्टर, ट्रांसमिशन इलैक्ट्रॉन माईक्रोस्कोप, एटोमिक फोर्स माईक्रोस्कोप, स्कैनिंग टनलिंग माईक्रोस्कोप, मैट्रिक्स असिस्टेड लेज़र डिजोर्पशन टार्इम ऑफ फ्लाइट मास स्पैक्ट्रोमीटर, माईक्रोअरे स्पॉटर और स्कैनर आदि की नैनो के स्तर पर जांच अनुसंधान की जरूरत है।
नैनो अनुप्रयोग और प्रौद्योगिकी विकास कार्यक्रम
उत्पाद और यंत्र विकसित करने के लिए नैनो अनुप्रयोग एवं प्रौद्योगिकी विकास कार्यक्रम को उत्प्रेरित करने के लिए मिशन का प्रस्ताव है कि अनुप्रयोगोन्मुख अनुसंधान और विकास परियोजनाओं को प्रोत्साहित किया जाए, नैनो अनुप्रयोग और प्रौद्योगिकी विकास केन्द्र स्थापित किये जाएं और नैनो प्रौद्योगिकी कारोबार इन्क्यूबेटर आदि खोले जाएं । इस मिशन में औद्योगिक क्षेत्र का सीधे अथवा जन – निजी भागीदारी उद्यमों के जरिए सहयोग लिया जा रहा है।
मानव संसाधन विकास
यह मिशन विभिन्न क्षेत्रों में अनुसंधानकर्ताओं और व्यावसायियों को कारगर शिक्षा और प्रशिक्षण उपलब्ध करने पर ध्यान केन्द्रित करेगा ताकि नैनो स्तर के विज्ञान , इंजीनियरी और प्रौद्योगिकी के लिए वास्तविक अंत: - अनुशासी संस्कृति तैयार हो सके। इससे कला और विज्ञान के स्नातकोत्तर कार्यक्रम लाभान्वित होंगे। इस क्षेत्र में राष्ट्रीय और समुद्र – पारीय पीएचडी के बाद की फेलोशिप, विश्वविद्यालयों में चेयर की स्थापना अन्य पहलू हैं।
नैनो मिशन का नैनो मिशन परिषद द्वारा संचालन किया जा रहा है। तकनीकी कार्यक्रम नैनो विज्ञान परामर्शदात्री समूह (एनएसएजी) और नैनो अनुप्रयोग एवं प्रौद्योगिकी परामर्शदात्री समूह (एनएटीएजी) नामक दो सलाहकार समूह द्वारा संचालित किये जा रहे हैं। विज्ञान और प्रौद्योगिकी विभाग ने नैनो विज्ञान और प्रौद्योगिकी विभिन्न गतिविधियों में सहायता प्रदान की है।
वैज्ञानिकों की अनुसंधान और विकास परियोजनाओं के लिए सहायता की गई है। चिकित्सकीय कार्यों के लिए विस्तृत प्रौद्योगिकियां विकसित की गई हैं। चितिन / चितोसन जेल का इस्तेमाल करते हुए घावों को ठीक करने के लिए मेम्बरेन स्केफोल्ड और आंखों में दवाई डालने के लिए नैनो कणों का कोच्चि स्थित अम़ृता इन्स्टीट्यूट ऑफ मेडीकल साइंसेस और हैदराबाद स्थित सेन्टर फॉर सेलुलर एंड मोलिक्यूलर बायोलॉजी तथा मुम्बई स्थित यूएसवी ने क्रमश: विकास किया है। नैनो स्तर की प्रणाली के आधारभूत वैज्ञानिक पहलुओं पर काम कर रहे वैज्ञानिकों के लिए लगभग 130 परियोजनाओं की सहायता की गई है। कई परियोजनाओं में सेमी कंडक्टर नैनो क्रिकेटल्स पर विस्तृत अध्ययन का काम शुरू किया गया है। चूंकि सेमी – कंडक्टर कण ऊर्जा के अंतर के उतार –चढ़ाव और आंखों के गुणों में तदनुरूप परिवर्तन जैसे आकार संबंधी विशेषताओं को प्रदशित करते हैं , इसलिए उन्हें तकनीकी रूप से महत्वपूण सामग्री समझा जाता है। एकल भित्ति कार्बन नैनोट्यूब (एसडब्ल्यूएनटी) बंडलों के मेट पर विभिन्न तरल पदार्थों और गैसों का बहाव विद्युत संकेत पैदा करते हैं। इस आविष्कार के कई महत्वपूर्ण निहितार्थ हैं। तरल पदार्थ संबंधी सूक्ष्म यंत्रों के विकास का जैव प्रौद्योगिकी, औषध उद्योग, डरग डिलिवरी निमौनीया, सूचना प्रौद्योगिकी आदि क्षेत्रों में कई परिणाम होंगे।
डीएसटी ने आधुनिक उपकरणों के कई केन्द्र स्थापित किये हैं, ताकि अनुसंधानकर्ता नैनो स्तर की प्रणाली पर काम कर सकें। समूचे देश में स्थापित करने के लिए नैनो विज्ञान की 11 इकाइयों / मुख्य समुहों को मंजूरी दी गई है। उनमें क्षेत्र के अन्य वैज्ञानिकों के साथ विचारों का आदान प्रदान करने के लिए कुछ अधिक आधुनिक सुविधाएं उपलब्ध हैं। इससे नैनो –स्केल प्रणाली पर विकेन्द्रीकृत तरीके से वैज्ञानिक अनुसंधान को प्रोत्साहित किया जा सकेगा। विशिष्ट अनुप्रयोग के विकास पर केन्द्रित नैनों प्रौद्योगिकी के सात केन्द्र और कम्प्यूटेशनल सामग्री में श्रेष्ठता का एक केन्द्र भी स्थापित किया गया है। विभिन्न देशों के साथ अनुसंधान और विकास की गतिविधियां चलाई जा रही हैं। मानव संसाधन विकास के लिए डीएसटी ने उद्योग से संबद्ध संयुक्त संस्था परियोजनाओं और सार्वजनिक – निजी भागीदारी की कुछ अन्य गतिविधियों को भी प्रोत्साहित किया गया है।
Wednesday, April 25, 2012
Robotics brings together several very different engineering areas and skills. There is metalworking for the body.
Robotics brings together several very different engineering areas and skills. There is metalworking for the body.
Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots and computer systems for their control, sensory feedback, and information processing.
The concept and creation of machines that could operate autonomously dates back to classical times, but research into the functionality and potential uses of robots did not grow substantially until the 20th century.
Today, robotics is a rapidly growing field, as we continue to research, design, and build new robots that serve various practical purposes, whether domestically, commercially, or militarily. Many robots do jobs that are hazardous to people such as defusing bombs, exploring shipwrecks, and mines.
A robot is a mechanical or virtual intelligent agent that can perform tasks automatically or with guidance, typically by remote control. In practice a robot is usually an electro-mechanical machine that is guided by computer and electronic programming. Robots can be autonomous, semi-autonomous or remotely controlled. Robots range from humanoids such as ASIMO and TOPIO to Nano robots, Swarm robots, Industrial robots, military robots, mobile and servicing robots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense that it has intent or agency of its own. The branch of technology that deals with robots is robotics.
Contemporary uses.....
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot, can, as of yet, actually navigate around a room that it has never been in. Thus humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments.
Car production
Over the last three decades automobile factories have become dominated by robots. A typical factory contains hundreds of industrial robots working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is welded, glued, painted and finally assembled at a sequence of robot stations.
Packaging
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers.
Electronics
Mass-produced printed circuit boards (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with SCARA manipulators, which remove tiny electronic components from strips or trays, and place them on to PCBs with great accuracy.Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability.
Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots and computer systems for their control, sensory feedback, and information processing.
The concept and creation of machines that could operate autonomously dates back to classical times, but research into the functionality and potential uses of robots did not grow substantially until the 20th century.
Today, robotics is a rapidly growing field, as we continue to research, design, and build new robots that serve various practical purposes, whether domestically, commercially, or militarily. Many robots do jobs that are hazardous to people such as defusing bombs, exploring shipwrecks, and mines.
A robot is a mechanical or virtual intelligent agent that can perform tasks automatically or with guidance, typically by remote control. In practice a robot is usually an electro-mechanical machine that is guided by computer and electronic programming. Robots can be autonomous, semi-autonomous or remotely controlled. Robots range from humanoids such as ASIMO and TOPIO to Nano robots, Swarm robots, Industrial robots, military robots, mobile and servicing robots. By mimicking a lifelike appearance or automating movements, a robot may convey a sense that it has intent or agency of its own. The branch of technology that deals with robots is robotics.
Contemporary uses.....
General-purpose autonomous robots can perform a variety of functions independently. General-purpose autonomous robots typically can navigate independently in known spaces, handle their own re-charging needs, interface with electronic doors and elevators and perform other basic tasks. Like computers, general-purpose robots can link with networks, software and accessories that increase their usefulness. They may recognize people or objects, talk, provide companionship, monitor environmental quality, respond to alarms, pick up supplies and perform other useful tasks. General-purpose robots may perform a variety of functions simultaneously or they may take on different roles at different times of day. Some such robots try to mimic human beings and may even resemble people in appearance; this type of robot is called a humanoid robot. Humanoid robots are still in a very limited stage, as no humanoid robot, can, as of yet, actually navigate around a room that it has never been in. Thus humanoid robots are really quite limited, despite their intelligent behaviors in their well-known environments.
Car production
Over the last three decades automobile factories have become dominated by robots. A typical factory contains hundreds of industrial robots working on fully automated production lines, with one robot for every ten human workers. On an automated production line, a vehicle chassis on a conveyor is welded, glued, painted and finally assembled at a sequence of robot stations.
Packaging
Industrial robots are also used extensively for palletizing and packaging of manufactured goods, for example for rapidly taking drink cartons from the end of a conveyor belt and placing them into boxes, or for loading and unloading machining centers.
Electronics
Mass-produced printed circuit boards (PCBs) are almost exclusively manufactured by pick-and-place robots, typically with SCARA manipulators, which remove tiny electronic components from strips or trays, and place them on to PCBs with great accuracy.Such robots can place hundreds of thousands of components per hour, far out-performing a human in speed, accuracy, and reliability.
Monday, April 23, 2012
Superconductivity is a phenomenon observed in several metals and ceramic materials. When these materials are cooled to temperatures ranging from near absolute zero ( 0 degrees Kelvin, -273 degrees Celsius) to liquid nitrogen temperatures ( 77 K, -196 C), their electrical resistance drops with a jump down to zero.
Superconductivity is a phenomenon observed in several metals and ceramic materials. When these materials are cooled to temperatures ranging from near absolute zero ( 0 degrees Kelvin, -273 degrees Celsius) to liquid nitrogen temperatures ( 77 K, -196 C), their electrical resistance drops with a jump down to zero.
The temperature at which electrical resistance is zero is called the critical temperature (Tc) and this temperature is a characteristic of the material as it is shown in the following table:
Material Type Tc(K)
Zinc metal 0.88
Aluminummetal 1.19
Tin metal 3.72
Mercury metal 4.15
YBa2Cu3O7ceramic 90
TlBaCaCuO ceramic 125
The temperature at which electrical resistance is zero is called the critical temperature (Tc) and this temperature is a characteristic of the material as it is shown in the following table:
Material Type Tc(K)
Zinc metal 0.88
Aluminummetal 1.19
Tin metal 3.72
Mercury metal 4.15
YBa2Cu3O7ceramic 90
TlBaCaCuO ceramic 125
If mercury is cooled below 4.1 K, it loses all electric resistance. This discovery of superconductivity by H. Kammerlingh Onnes in 1911 was followed by the observation of other metals which exhibit zero resistivity below a certain critical temperature.
If mercury is cooled below 4.1 K, it loses all electric resistance. This discovery of superconductivity by H. Kammerlingh Onnes in 1911 was followed by the observation of other metals which exhibit zero resistivity below a certain critical temperature. The fact that the resistance is zero has been demonstrated by sustaining currents in superconducting lead rings for many years with no measurable reduction. An induced current in an ordinary metal ring would decay rapidly from the dissipation of ordinary resistance, but superconducting rings had exhibited a decay constant of over a billion years!
One of the properties of a superconductor is that it will exclude magnetic fields, a phenomenon called the Meissner effect.
The disappearance of electrical resistivity was modeled in terms of electron pairing in the crystal lattice by John Bardeen, Leon Cooper, and Robert Schrieffer in what is commonly called the BCS theory.
A new era in the study of superconductivity began in 1986 with the discovery of high critical temperature superconductors.
The critical temperature for superconductors is the temperature at which the electrical resistivity of a metal drops to zero. The transition is so sudden and complete that it appears to be a transition to a different phase of matter; this superconducting phase is described by the BCS theory. Several materials exhibit superconducting phase transitions at low temperatures. The highest critical temperature was about 23 K until the discovery in 1986 of some high temperature superconductors.
Materials with critical temperatures in the range 120 K have received a great deal of attention because they can be maintained in the superconducting state with liquid nitrogen (77 K).
Superconducting magnets are some of the most powerful electromagnets known. They are used in MRI/NMR machines, mass spectrometers, and the beam-steering magnets used in particle accelerators. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the pigment industries.
In the 1950s and 1960s, superconductors were used to build experimental digital computers using cryotron switches. More recently, superconductors have been used to make digital circuits based on rapid single flux quantum technology and RF and microwave filters for mobile phone base stations.
Superconductors are used to build Josephson junctions which are the building blocks of SQUIDs (superconducting quantum interference devices), the most sensitive magnetometers known. SQUIDs are used in scanning SQUID microscopes and magnetoencephalography. Series of Josephson devices are used to realize the SI volt. Depending on the particular mode of operation, a superconductor-insulator-superconductor Josephson junction can be used as a photon detector or as a mixer. The large resistance change at the transition from the normal- to the superconducting state is used to build thermometers in cryogenic micro-calorimeter photon detectors. The same effect is used in ultrasensitive bolometers made from superconducting materials.
Other early markets are arising where the relative efficiency, size and weight advantages of devices based on high-temperature superconductivity outweigh the additional costs involved.
Promising future applications include high-performance smart grid, electric power transmission, transformers, power storage devices, electric motors (e.g. for vehicle propulsion, as in vactrains or maglev trains), magnetic levitation devices, fault current limiters, nanoscopic materials such as buckyballs, nanotubes, composite materials and superconducting magnetic refrigeration. However, superconductivity is sensitive to moving magnetic fields so applications that use alternating current (e.g. transformers) will be more difficult to develop than those that rely upon direct current.
One of the properties of a superconductor is that it will exclude magnetic fields, a phenomenon called the Meissner effect.
The disappearance of electrical resistivity was modeled in terms of electron pairing in the crystal lattice by John Bardeen, Leon Cooper, and Robert Schrieffer in what is commonly called the BCS theory.
A new era in the study of superconductivity began in 1986 with the discovery of high critical temperature superconductors.
The critical temperature for superconductors is the temperature at which the electrical resistivity of a metal drops to zero. The transition is so sudden and complete that it appears to be a transition to a different phase of matter; this superconducting phase is described by the BCS theory. Several materials exhibit superconducting phase transitions at low temperatures. The highest critical temperature was about 23 K until the discovery in 1986 of some high temperature superconductors.
Materials with critical temperatures in the range 120 K have received a great deal of attention because they can be maintained in the superconducting state with liquid nitrogen (77 K).
Superconducting magnets are some of the most powerful electromagnets known. They are used in MRI/NMR machines, mass spectrometers, and the beam-steering magnets used in particle accelerators. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the pigment industries.
In the 1950s and 1960s, superconductors were used to build experimental digital computers using cryotron switches. More recently, superconductors have been used to make digital circuits based on rapid single flux quantum technology and RF and microwave filters for mobile phone base stations.
Superconductors are used to build Josephson junctions which are the building blocks of SQUIDs (superconducting quantum interference devices), the most sensitive magnetometers known. SQUIDs are used in scanning SQUID microscopes and magnetoencephalography. Series of Josephson devices are used to realize the SI volt. Depending on the particular mode of operation, a superconductor-insulator-superconductor Josephson junction can be used as a photon detector or as a mixer. The large resistance change at the transition from the normal- to the superconducting state is used to build thermometers in cryogenic micro-calorimeter photon detectors. The same effect is used in ultrasensitive bolometers made from superconducting materials.
Other early markets are arising where the relative efficiency, size and weight advantages of devices based on high-temperature superconductivity outweigh the additional costs involved.
Promising future applications include high-performance smart grid, electric power transmission, transformers, power storage devices, electric motors (e.g. for vehicle propulsion, as in vactrains or maglev trains), magnetic levitation devices, fault current limiters, nanoscopic materials such as buckyballs, nanotubes, composite materials and superconducting magnetic refrigeration. However, superconductivity is sensitive to moving magnetic fields so applications that use alternating current (e.g. transformers) will be more difficult to develop than those that rely upon direct current.
Optical fiber can be used as a medium for telecommunication and computer networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters.
Thursday, March 8, 2012
विशेष आर्थिक जोन
वर्ष 2005 में भारत सरकार के वाणिज्य मंत्रालय ने अंतरराष्ट्रीय स्तर पर प्रतिस्पर्धात्मक वातावरण उपलब्ध कराने तथा निर्यात के लिए बाधा मुक्त वातावरण तैयार करने के उद्देश्य से विशेष आर्थिक जोन (एसईजैड) अधिनियम लागू किया। एसईजैड को 'विशिष्ट रूप से निर्धारित शुल्क मुक्त वातावरण और व्यापार संबंधी कार्यों व शुल्कों और टैरिफ के उद्देश्य से विदेशी सीमा (सीमा शुल्क क्षेत्र से परे)' माना गया है। एसईजैड अधिनियम 2005 और इससे संबंधित एसईजैड नियमावली 10 फरवरी 2006 को प्रभावी हुए। इससे क्रियाकलापों को बहुत अधिक सरल बनाया गया तथा केंद्र व राज्य सरकारों से संबंधित मामलों में एकल खिड़की क्लीयरेंस नीति के रूप में निर्धारित किया गया। यह योजना बड़े उद्योगों के लिए बहुत आदर्श है तथा इसका भावी निर्यात एवं रोजगार पर बहुत अनुकूल प्रभाव पड़ेग।
एसईजैड योजना में एसईजैड इकाइयों को प्रत्यक्ष करों के संदर्भ में वही लाभ दिए गए हैं जो एसटीपीआई के अंतर्गत दिए गए हैं, केवल परिचालन संबंधी विवरण में थोड़े बहुत अंतर हैं। परन्तु आय कर के संबंध में अंतर उल्लेखनीय है। एसईजैड योजना के अंतर्गत आय कर में छूट को उत्पाद का निर्यात आरंभ होने की तिथि से 15 वर्ष की अवधि के दौरान धीरे-धीरे कम किया जाता है। उत्पाद का विनिर्माण आरंभ होने के 5 वर्षों तक निर्यात लाभों को आय कर में 100 प्रतिशत छूट प्राप्त है, अगले 5 वर्षां तक यह छूट 50 प्रतिशत है जबकि और अगले 5 वर्षों तक यह 50 प्रतिशत है, बशर्ते कि लाभों को विशेष आरक्षित राशि में हस्तांतरित किया जाए।
एसईजैड नीति का उद्देश्य प्रतिस्पर्धा का सृजन, विश्व स्तर की अवसंरचना उपलब्ध कराते हुए सुविधाजनक एवं समेकित क्षेत्रों की स्थापना करना और वैश्विक स्तर के व्यापार के लिए उपयुक्तत सेवाएं प्रदान करना है। एसईजैड अधिनियम 2005 निर्यात प्रवर्धन एवं संबंधित बुनियादी ढांचे के सृजन में राज्य सरकारों को प्रमुख सुविधाएं उलपब्ध कराता है। एसईजैड योजना की कुछ प्रमुख विशेषताएं इस प्रकार हैं -
बाधा रहित विनिर्माण एवं निर्यात के उद्देश्य से किए जाने वाले व्यापार के लिए विशेष आर्थिक जोन (एसईजैड) गठित किए गए हैं।
घरेलू टैरिफ क्षेत्र (डीटीए) से एसईजैड को होने वाली बिक्री को भौतिक निर्यात माना जाता है। इससे घरेलू आपूर्तिकर्ताओं को ड्राबैक/डीईबीपी लाभ प्राप्त होते हैं, केंद्रीय बिक्री कर में छूट मिलती है और सेवा कर में भी छूट प्राप्त होती है।
एसईजैड इकाइयों को 5 वर्षों तक आय कर में शत-प्रतिशत, उसके 5 वर्ष बाद 50 प्रतिशत और उसके पश्चात 5 वर्षों तक प्राप्त किए गए लाभों पर 50 प्रतिशत की छूट प्राप्त होती है।
यह योजना, जो बड़े उद्योगों के लिए बहुत उपयुक्त है, ने भावी निर्यात एवं रोजगार पर उल्लेखनीय प्रभाव डाला है।
एसईजैड योजना में एसईजैड इकाइयों को प्रत्यक्ष करों के संदर्भ में वही लाभ दिए गए हैं जो एसटीपीआई के अंतर्गत दिए गए हैं, केवल परिचालन संबंधी विवरण में थोड़े बहुत अंतर हैं। परन्तु आय कर के संबंध में अंतर उल्लेखनीय है। एसईजैड योजना के अंतर्गत आय कर में छूट को उत्पाद का निर्यात आरंभ होने की तिथि से 15 वर्ष की अवधि के दौरान धीरे-धीरे कम किया जाता है। उत्पाद का विनिर्माण आरंभ होने के 5 वर्षों तक निर्यात लाभों को आय कर में 100 प्रतिशत छूट प्राप्त है, अगले 5 वर्षां तक यह छूट 50 प्रतिशत है जबकि और अगले 5 वर्षों तक यह 50 प्रतिशत है, बशर्ते कि लाभों को विशेष आरक्षित राशि में हस्तांतरित किया जाए।
एसईजैड नीति का उद्देश्य प्रतिस्पर्धा का सृजन, विश्व स्तर की अवसंरचना उपलब्ध कराते हुए सुविधाजनक एवं समेकित क्षेत्रों की स्थापना करना और वैश्विक स्तर के व्यापार के लिए उपयुक्तत सेवाएं प्रदान करना है। एसईजैड अधिनियम 2005 निर्यात प्रवर्धन एवं संबंधित बुनियादी ढांचे के सृजन में राज्य सरकारों को प्रमुख सुविधाएं उलपब्ध कराता है। एसईजैड योजना की कुछ प्रमुख विशेषताएं इस प्रकार हैं -
बाधा रहित विनिर्माण एवं निर्यात के उद्देश्य से किए जाने वाले व्यापार के लिए विशेष आर्थिक जोन (एसईजैड) गठित किए गए हैं।
घरेलू टैरिफ क्षेत्र (डीटीए) से एसईजैड को होने वाली बिक्री को भौतिक निर्यात माना जाता है। इससे घरेलू आपूर्तिकर्ताओं को ड्राबैक/डीईबीपी लाभ प्राप्त होते हैं, केंद्रीय बिक्री कर में छूट मिलती है और सेवा कर में भी छूट प्राप्त होती है।
एसईजैड इकाइयों को 5 वर्षों तक आय कर में शत-प्रतिशत, उसके 5 वर्ष बाद 50 प्रतिशत और उसके पश्चात 5 वर्षों तक प्राप्त किए गए लाभों पर 50 प्रतिशत की छूट प्राप्त होती है।
यह योजना, जो बड़े उद्योगों के लिए बहुत उपयुक्त है, ने भावी निर्यात एवं रोजगार पर उल्लेखनीय प्रभाव डाला है।
साफ्टवेयर प्रौद्योगिकी पार्क
देश से साफ्टवेयर निर्यात को बढ़ावा देने के लिए 1991 में सूचना प्रौद्योगिकी विभाग के अंतर्गत स्वायतशासी सोसायटी के रूप में, भारत में, साफ्टवेयर प्रौद्योगिकी पार्क स्थापित किए गए। एसटीपीआई द्वारा साफ्टवेयर निर्यात समुदाय को प्रदान की गई सेवाएं सांविधिक स्वकरूप की रही हैं और इनमें अनिवार्य सेवाओं के अलावा डेटा कम्युनिकेशन सर्वर, इनक्यूबेशन सुविधाएं, प्रशिक्षण और मूल्यवर्धित सेवाएं सम्मिलित हैं। एसटीपीआई ने एसएमई पर विशेष बल देते हुए यूनिटों को आरंभ करने में सॉफ्टवेयर निर्यात के संवर्धन के संदर्भ में प्रमुख विकासात्मक भूमिका अदा की है। एसटीपी योजना साफ्टवेयर उद्योग के संवर्धन के संदर्भ में अत्यधिक सफल सिद्ध हुई है। पिछले कुछ वर्षों में एसटीपी इकाइयों द्वारा किया गया निर्यात कई गुना बढ़ गया है। आज अर्थात 2008-09 के दौरान एसटीपीआई की पंजीकृत यूनिट द्वारा किया गया निर्यात भारतीय रुपये में 215571 करोड़ है जो हमारे देश के कुल सॉफ्टवेयर निर्यात का लगभग 90 प्रतिशत है।
एसटीपीआई योजना की पहचान सूचना प्रौद्योगिकी तथा आईटीईएस निर्यात के संवर्धन हेतु एक सर्वाधिक प्रभावकारी योजना के रूप में की गई है। कार्यक्रम के आरंभ होने से अब तक जो 51 एसटीपीआई केंद्र स्थापित किए गए हैं उनसे सूचना प्रौद्योगिकी एवं आईटीईएस निर्यात को बहुत बढ़ावा मिला है। पूंजीगत साजो-सामान के लिए सीमा शुल्क में उपलब्ध छूट (कुछ अपवादों को छोड़कर) के अलावा सेवा कर, सीमा शुल्क एवं केंंदीय बिक्री कर की अदायगी में भी छूट दी गई है। तथापि, निर्यात से प्राप्त होने वाले लाभ पर आय कर में शत-प्रतिशत की छूट सर्वाधिक महत्वपूर्ण प्रोत्साहन है, जिसे 31 मार्च 2011 तक बढ़ा दिया गया है। इस योजना की शक्ति मुख्यत: इस तथ्य पर निर्भर है कि यह वास्तव में एक ऐसी वास्तविक योजना है जिससे सॉफ्टवेयर कंपनियों को सर्वाधिक सुविधाजनक एवं सबसे सस्ते स्थानों पर अपने क्रियाकलाप चलाने में सुगमता होती है और वे अपने निवेश को भली प्रकार सुनियोजित कर सकते हैं तथा इस व्यापार में आवश्यकता के अनुसार धन निवेश कर सकते हैं। एसटीपी योजना एक पूर्णत: भारतीय योजना है जिसके केंद्र पूरे भारत में फैले हुए हैं और एसटीपी योजना के अंतर्गत 8000 से अधिक इकाइयां पंजीकृत हैं।
एसटीपी योजना के लाभ
एसटीपी योजना के अंतर्गत निम्नलिखित लाभ उपलब्ध हैं :
आय कर अधिनियम की धारा 10क और 10ख के अंतर्गत 31.3.2011 तक आय कर में लाभ
घरेलू खरीद पर केंद्रीय उत्पाद शुल्क में छूट.
फार्म C पर घरेलू खरीद किए जाने पर केंद्रीय बिक्री कर की प्रतिपूर्ति
सैकंड हैंड या पुराने उपकरणों सहित सभी संबंधित उपकरणों/माल का आयात किया जा सकता है (प्रतिबंधित मदों को छोड़कर)
उपकरणों को उधार/पट्टे पर भी आयात किया जा सकता है।
स्वचालित रूट से 100 प्रतिशत एफडीआई की अनुमति है।
स्वीाकृत निर्यात के एफओबी मान के 50 प्रतिशत तक डीटीए की बिक्री की जा सकती है।
कुछ शर्तों सहित आयात किए गए कम्प्यूटरों का अनुप्रयोग प्रशिक्षण के लिए भी किया जा सकता है।
कम्प्यूटरों पर पांच वर्ष या इससे अधिक समय के बाद शत-प्रतिशत मूल्य ह्रास की अनुमति है।
कम्प्यूटरों को उपयोग के 2 वर्ष के पश्चात बिना किसी शुल्क की अदायगी के मान्यता प्राप्त गैर-वाणिज्यिक शैक्षणिक संस्थाओं/अस्पतालों को दान किया जा सकता है।
निर्यात से प्राप्त होने वाली राशि 12 महीनों के अंदर वसूली जा सकती है।
इकाइयों को निर्यात से हुई शत-प्रतिशत आय को ईईएफसी खाते में रखने की अनुमति दी गई है।
एसटीपीआई योजना की पहचान सूचना प्रौद्योगिकी तथा आईटीईएस निर्यात के संवर्धन हेतु एक सर्वाधिक प्रभावकारी योजना के रूप में की गई है। कार्यक्रम के आरंभ होने से अब तक जो 51 एसटीपीआई केंद्र स्थापित किए गए हैं उनसे सूचना प्रौद्योगिकी एवं आईटीईएस निर्यात को बहुत बढ़ावा मिला है। पूंजीगत साजो-सामान के लिए सीमा शुल्क में उपलब्ध छूट (कुछ अपवादों को छोड़कर) के अलावा सेवा कर, सीमा शुल्क एवं केंंदीय बिक्री कर की अदायगी में भी छूट दी गई है। तथापि, निर्यात से प्राप्त होने वाले लाभ पर आय कर में शत-प्रतिशत की छूट सर्वाधिक महत्वपूर्ण प्रोत्साहन है, जिसे 31 मार्च 2011 तक बढ़ा दिया गया है। इस योजना की शक्ति मुख्यत: इस तथ्य पर निर्भर है कि यह वास्तव में एक ऐसी वास्तविक योजना है जिससे सॉफ्टवेयर कंपनियों को सर्वाधिक सुविधाजनक एवं सबसे सस्ते स्थानों पर अपने क्रियाकलाप चलाने में सुगमता होती है और वे अपने निवेश को भली प्रकार सुनियोजित कर सकते हैं तथा इस व्यापार में आवश्यकता के अनुसार धन निवेश कर सकते हैं। एसटीपी योजना एक पूर्णत: भारतीय योजना है जिसके केंद्र पूरे भारत में फैले हुए हैं और एसटीपी योजना के अंतर्गत 8000 से अधिक इकाइयां पंजीकृत हैं।
एसटीपी योजना के लाभ
एसटीपी योजना के अंतर्गत निम्नलिखित लाभ उपलब्ध हैं :
आय कर अधिनियम की धारा 10क और 10ख के अंतर्गत 31.3.2011 तक आय कर में लाभ
घरेलू खरीद पर केंद्रीय उत्पाद शुल्क में छूट.
फार्म C पर घरेलू खरीद किए जाने पर केंद्रीय बिक्री कर की प्रतिपूर्ति
सैकंड हैंड या पुराने उपकरणों सहित सभी संबंधित उपकरणों/माल का आयात किया जा सकता है (प्रतिबंधित मदों को छोड़कर)
उपकरणों को उधार/पट्टे पर भी आयात किया जा सकता है।
स्वचालित रूट से 100 प्रतिशत एफडीआई की अनुमति है।
स्वीाकृत निर्यात के एफओबी मान के 50 प्रतिशत तक डीटीए की बिक्री की जा सकती है।
कुछ शर्तों सहित आयात किए गए कम्प्यूटरों का अनुप्रयोग प्रशिक्षण के लिए भी किया जा सकता है।
कम्प्यूटरों पर पांच वर्ष या इससे अधिक समय के बाद शत-प्रतिशत मूल्य ह्रास की अनुमति है।
कम्प्यूटरों को उपयोग के 2 वर्ष के पश्चात बिना किसी शुल्क की अदायगी के मान्यता प्राप्त गैर-वाणिज्यिक शैक्षणिक संस्थाओं/अस्पतालों को दान किया जा सकता है।
निर्यात से प्राप्त होने वाली राशि 12 महीनों के अंदर वसूली जा सकती है।
इकाइयों को निर्यात से हुई शत-प्रतिशत आय को ईईएफसी खाते में रखने की अनुमति दी गई है।
Disadvantages of Global Warming
Ocean circulation disrupted, disrupting and having unknown effects on world climate.
Higher sea level leading to flooding of low-lying lands and deaths and disease from flood and evacuation.
Deserts get drier leaving to increased desertification.
Changes to agricultural production that can lead to food shortages.
Water shortages in already water-scarce areas.
Starvation, malnutrition, and increased deaths due to food and crop shortages.
More extreme weather and an increased frequency of severe and catastrophic storms.
Increased disease in humans and animals.
Increased deaths from heat waves.
Extinction of additional species of animals and plants.
Loss of animal and plant habitats.
Increased emigration of those from poorer or low-lying countries to wealthier or higher countries seeking better (or non-deadly) conditions.
Additional use of energy resources for cooling needs.
Increased air pollution.
Increased allergy and asthma rates due to earlier blooming of plants.
Melt of permafrost leads to destruction of structures, landslides, and avalanches.
Permanent loss of glaciers and ice sheets.
Cultural or heritage sites destroyed faster due to increased extremes.
Increased acidity of rainfall.
Earlier drying of forests leading to increased forest fires in size and intensity.
Increased cost of insurance as insurers pay out more claims resulting from increasingly large disasters.
Higher sea level leading to flooding of low-lying lands and deaths and disease from flood and evacuation.
Deserts get drier leaving to increased desertification.
Changes to agricultural production that can lead to food shortages.
Water shortages in already water-scarce areas.
Starvation, malnutrition, and increased deaths due to food and crop shortages.
More extreme weather and an increased frequency of severe and catastrophic storms.
Increased disease in humans and animals.
Increased deaths from heat waves.
Extinction of additional species of animals and plants.
Loss of animal and plant habitats.
Increased emigration of those from poorer or low-lying countries to wealthier or higher countries seeking better (or non-deadly) conditions.
Additional use of energy resources for cooling needs.
Increased air pollution.
Increased allergy and asthma rates due to earlier blooming of plants.
Melt of permafrost leads to destruction of structures, landslides, and avalanches.
Permanent loss of glaciers and ice sheets.
Cultural or heritage sites destroyed faster due to increased extremes.
Increased acidity of rainfall.
Earlier drying of forests leading to increased forest fires in size and intensity.
Increased cost of insurance as insurers pay out more claims resulting from increasingly large disasters.
Applications of Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale.
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicine are used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
Nanotechnology has been a boon for the medical field by delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.
Nanotechnology can help reproduce or repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. For example, bones can be regrown on carbon nanotube scaffolds. Tissue engineering might replace today's conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
A strong influence of photochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination.
Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at present. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.
The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders may be able to halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles.
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost. In the near future Nanotechnology can be used to sense cracks in foundations of architecture and can send nanobots to repair them.
Nanotechnology is one of the most active research areas that encompass a number of disciplines Such as electronics, bio-mechanics and coatings including civil engineering and construction materials.
The use of nanotechnology in construction involves the development of new concept and understanding of the hydration of cement particles and the use of nano-size ingredients such as alumina and silica and other nanoparticles. The manufactures also investigating the methods of manufacturing of nano-cement. If cement with nano-size particles can be manufactured and processed, it will open up a large number of opportunities in the fields of ceramics, high strength composites and electronic applications. Since at the nanoscale the properties of the material are different from that of their bulk counter parts. When materials becomes nano-sized, the proportion of atoms on the surface increases relative to those inside and this leads to novel properties. Some applications of nanotechnology in construction are describe below.
Steel has been widely available material and has a major role in the construction industry. The use of nanotechnology in steel helps to improve the properties of steel. The fatigue, which led to the structural failure of steel due to cyclic loading, such as in bridges or towers.The current steel designs are based on the reduction in the allowable stress, service life or regular inspection regime. This has a significant impact on the life-cycle costs of structures and limits the effective use of resources.The Stress risers are responsible for initiating cracks from which fatigue failure results .The addition of copper nanoparticles reduces the surface un-evenness of steel which then limits the number of stress risers and hence fatigue cracking. Advancements in this technology using nanoparticles would lead to increased safety, less need for regular inspection regime and more efficient materials free from fatigue issues for construction.
The nano-size steel produce stronger steel cables which can be in bridge construction. Also these stronger cable material would reduce the costs and period of construction, especially in suspension bridges as the cables are run from end to end of the span. This would require high strength joints which leads to the need for high strength bolts. The capacity of high strength bolts is obtained through quenching and tempering. The microstructures of such products consist of tempered martensite. When the tensile strength of tempered martensite steel exceeds 1,200 MPa even a very small amount of hydrogen embrittles the grain boundaries and the steel material may fail during use. This phenomenon, which is known as delayed fracture, which hindered the strengthening of steel bolts and their highest strength is limited to only around 1,000 to 1,200 MPa.
Glass is also an important material in construction. Research is being carried out on the application of nanotechnology to glass. Titanium dioxide (TiO2) nanoparticles are used to coat glazing since it has sterilizing and anti-fouling properties. The particles catalyze powerful reactions which break down organic pollutants, volatile organic compounds and bacterial membranes. The TiO2 is hydrophilic (attraction to water) which can attract rain drops which then wash off the dirt particles. Thus the introduction of nanotechnology in the Glass industry, incorporates the self cleaning property of glass.
Fire-protective glass is another application of nanotechnology. This is achieved by using a clear intumescent layer sandwiched between glass panels (an interlayer) formed of silica nanoparticles (SiO2) which turns into a rigid and opaque fire shield when heated. Most of glass in construction is on the exterior surface of buildings. So the light and heat entering the building through glass has to be prevented. The nanotechnology can provide a better solution to block light and heat coming through windows.
Coatings is an important area in construction coatings are extensively use to paint the walls, doors, and windows. Coatings should provide a protective layer which is bound to the base material to produce a surface of the desired protective or functional properties. The coatings should have self healing capabilities through a process of “self-assembly.” Nanotechnology is being applied to paints to obtained the coatings having self healing capabilities and corrosion protection under insulation. Since these coatings are hydrophobic and repels water from the metal pipe and can also protect metal from salt water attack.Nanoparticle based systems can provide better adhesion and transparency. The TiO2 coating captures and breaks down organic and inorganic air pollutants by a photocatalytic process, which leads to putting roads to good environmental use.
Fire resistance of steel structures is often provided by a coating produced by a spray-on-cementitious process.The nano-cement has the potential to create a new paradigm in this area of application because the resulting material can be used as a tough, durable, high temperature coating. It provides a good method of increasing fire resistance and this is a cheaper option than conventional insulation.
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential.
Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods.
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nano ceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-optics could allow for an increase in precision of pupil repair and other types of laser eye surgery.
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer.
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased.
Applications of nanotechnology have the potential to change the entire agriculture sector and food industry chain from production to conservation, processing, packaging, transportation, and even waste treatment. NanoScience concepts and nanotechnology applications have the potential to redesign the production cycle, restructure the processing and conservation processes and redefine the food habits of the people.
Major challenges related to agriculture like low productivity in cultivable areas, large uncultivable areas, shrinkage of cultivable lands, wastage of inputs like water, fertilizers, pesticides, wastage of products and of course Food security for growing numbers can be addressed through various applications of nanotechnology.
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicine are used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
Nanotechnology has been a boon for the medical field by delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.
Nanotechnology can help reproduce or repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. For example, bones can be regrown on carbon nanotube scaffolds. Tissue engineering might replace today's conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
A strong influence of photochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination.
Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at present. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.
The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders may be able to halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles.
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost. In the near future Nanotechnology can be used to sense cracks in foundations of architecture and can send nanobots to repair them.
Nanotechnology is one of the most active research areas that encompass a number of disciplines Such as electronics, bio-mechanics and coatings including civil engineering and construction materials.
The use of nanotechnology in construction involves the development of new concept and understanding of the hydration of cement particles and the use of nano-size ingredients such as alumina and silica and other nanoparticles. The manufactures also investigating the methods of manufacturing of nano-cement. If cement with nano-size particles can be manufactured and processed, it will open up a large number of opportunities in the fields of ceramics, high strength composites and electronic applications. Since at the nanoscale the properties of the material are different from that of their bulk counter parts. When materials becomes nano-sized, the proportion of atoms on the surface increases relative to those inside and this leads to novel properties. Some applications of nanotechnology in construction are describe below.
Steel has been widely available material and has a major role in the construction industry. The use of nanotechnology in steel helps to improve the properties of steel. The fatigue, which led to the structural failure of steel due to cyclic loading, such as in bridges or towers.The current steel designs are based on the reduction in the allowable stress, service life or regular inspection regime. This has a significant impact on the life-cycle costs of structures and limits the effective use of resources.The Stress risers are responsible for initiating cracks from which fatigue failure results .The addition of copper nanoparticles reduces the surface un-evenness of steel which then limits the number of stress risers and hence fatigue cracking. Advancements in this technology using nanoparticles would lead to increased safety, less need for regular inspection regime and more efficient materials free from fatigue issues for construction.
The nano-size steel produce stronger steel cables which can be in bridge construction. Also these stronger cable material would reduce the costs and period of construction, especially in suspension bridges as the cables are run from end to end of the span. This would require high strength joints which leads to the need for high strength bolts. The capacity of high strength bolts is obtained through quenching and tempering. The microstructures of such products consist of tempered martensite. When the tensile strength of tempered martensite steel exceeds 1,200 MPa even a very small amount of hydrogen embrittles the grain boundaries and the steel material may fail during use. This phenomenon, which is known as delayed fracture, which hindered the strengthening of steel bolts and their highest strength is limited to only around 1,000 to 1,200 MPa.
Glass is also an important material in construction. Research is being carried out on the application of nanotechnology to glass. Titanium dioxide (TiO2) nanoparticles are used to coat glazing since it has sterilizing and anti-fouling properties. The particles catalyze powerful reactions which break down organic pollutants, volatile organic compounds and bacterial membranes. The TiO2 is hydrophilic (attraction to water) which can attract rain drops which then wash off the dirt particles. Thus the introduction of nanotechnology in the Glass industry, incorporates the self cleaning property of glass.
Fire-protective glass is another application of nanotechnology. This is achieved by using a clear intumescent layer sandwiched between glass panels (an interlayer) formed of silica nanoparticles (SiO2) which turns into a rigid and opaque fire shield when heated. Most of glass in construction is on the exterior surface of buildings. So the light and heat entering the building through glass has to be prevented. The nanotechnology can provide a better solution to block light and heat coming through windows.
Coatings is an important area in construction coatings are extensively use to paint the walls, doors, and windows. Coatings should provide a protective layer which is bound to the base material to produce a surface of the desired protective or functional properties. The coatings should have self healing capabilities through a process of “self-assembly.” Nanotechnology is being applied to paints to obtained the coatings having self healing capabilities and corrosion protection under insulation. Since these coatings are hydrophobic and repels water from the metal pipe and can also protect metal from salt water attack.Nanoparticle based systems can provide better adhesion and transparency. The TiO2 coating captures and breaks down organic and inorganic air pollutants by a photocatalytic process, which leads to putting roads to good environmental use.
Fire resistance of steel structures is often provided by a coating produced by a spray-on-cementitious process.The nano-cement has the potential to create a new paradigm in this area of application because the resulting material can be used as a tough, durable, high temperature coating. It provides a good method of increasing fire resistance and this is a cheaper option than conventional insulation.
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential.
Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods.
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nano ceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-optics could allow for an increase in precision of pupil repair and other types of laser eye surgery.
The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer.
One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium dioxide offer several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased.
Applications of nanotechnology have the potential to change the entire agriculture sector and food industry chain from production to conservation, processing, packaging, transportation, and even waste treatment. NanoScience concepts and nanotechnology applications have the potential to redesign the production cycle, restructure the processing and conservation processes and redefine the food habits of the people.
Major challenges related to agriculture like low productivity in cultivable areas, large uncultivable areas, shrinkage of cultivable lands, wastage of inputs like water, fertilizers, pesticides, wastage of products and of course Food security for growing numbers can be addressed through various applications of nanotechnology.
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres. Quantum mechanical effects are important at this quantum-realm scale.
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicine are used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
Nanotechnology has been a boon for the medical field by delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.
Nanotechnology can help reproduce or repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. For example, bones can be regrown on carbon nanotube scaffolds. Tissue engineering might replace today's conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
A strong influence of photochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination.
Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at present. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.
The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders may be able to halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles.
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost. In the near future Nanotechnology can be used to sense cracks in foundations of architecture and can send nanobots to repair them.
Nanotechnology is one of the most active research areas that encompass a number of disciplines Such as electronics, bio-mechanics and coatings including civil engineering and construction materials.
The use of nanotechnology in construction involves the development of new concept and understanding of the hydration of cement particles and the use of nano-size ingredients such as alumina and silica and other nanoparticles. The manufactures also investigating the methods of manufacturing of nano-cement. If cement with nano-size particles can be manufactured and processed, it will open up a large number of opportunities in the fields of ceramics, high strength composites and electronic applications. Since at the nanoscale the properties of the material are different from that of their bulk counter parts. When materials becomes nano-sized, the proportion of atoms on the surface increases relative to those inside and this leads to novel properties. Some applications of nanotechnology in construction are describe below.
Steel has been widely available material and has a major role in the construction industry. The use of nanotechnology in steel helps to improve the properties of steel. The fatigue, which led to the structural failure of steel due to cyclic loading, such as in bridges or towers.The current steel designs are based on the reduction in the allowable stress, service life or regular inspection regime. This has a significant impact on the life-cycle costs of structures and limits the effective use of resources.The Stress risers are responsible for initiating cracks from which fatigue failure results .The addition of copper nanoparticles reduces the surface un-evenness of steel which then limits the number of stress risers and hence fatigue cracking. Advancements in this technology using nanoparticles would lead to increased safety, less need for regular inspection regime and more efficient materials free from fatigue issues for construction.
The nano-size steel produce stronger steel cables which can be in bridge construction. Also these stronger cable material would reduce the costs and period of construction, especially in suspension bridges as the cables are run from end to end of the span. This would require high strength joints which leads to the need for high strength bolts. The capacity of high strength bolts is obtained through quenching and tempering. The microstructures of such products consist of tempered martensite. When the tensile strength of tempered martensite steel exceeds 1,200 MPa even a very small amount of hydrogen embrittles the grain boundaries and the steel material may fail during use. This phenomenon, which is known as delayed fracture, which hindered the strengthening of steel bolts and their highest strength is limited to only around 1,000 to 1,200 MPa.
Glass is also an important material in construction. Research is being carried out on the application of nanotechnology to glass. Titanium dioxide (TiO2) nanoparticles are used to coat glazing since it has sterilizing and anti-fouling properties. The particles catalyze powerful reactions which break down organic pollutants, volatile organic compounds and bacterial membranes. The TiO2 is hydrophilic (attraction to water) which can attract rain drops which then wash off the dirt particles. Thus the introduction of nanotechnology in the Glass industry, incorporates the self cleaning property of glass.
Fire-protective glass is another application of nanotechnology. This is achieved by using a clear intumescent layer sandwiched between glass panels (an interlayer) formed of silica nanoparticles (SiO2) which turns into a rigid and opaque fire shield when heated. Most of glass in construction is on the exterior surface of buildings. So the light and heat entering the building through glass has to be prevented. The nanotechnology can provide a better solution to block light and heat coming through windows.
Coatings is an important area in construction coatings are extensively use to paint the walls, doors, and windows. Coatings should provide a protective layer which is bound to the base material to produce a surface of the desired protective or functional properties. The coatings should have self healing capabilities through a process of “self-assembly.” Nanotechnology is being applied to paints to obtained the coatings having self healing capabilities and corrosion protection under insulation. Since these coatings are hydrophobic and repels water from the metal pipe and can also protect metal from salt water attack.Nanoparticle based systems can provide better adhesion and transparency. The TiO2 coating captures and breaks down organic and inorganic air pollutants by a photocatalytic process, which leads to putting roads to good environmental use.
Fire resistance of steel structures is often provided by a coating produced by a spray-on-cementitious process.The nano-cement has the potential to create a new paradigm in this area of application because the resulting material can be used as a tough, durable, high temperature coating. It provides a good method of increasing fire resistance and this is a cheaper option than conventional insulation.
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential.
Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods.
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nano ceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
The biological and medical research communities have exploited the unique properties of nanomaterials for various applications (e.g., contrast agents for cell imaging and therapeutics for treating cancer). Terms such as biomedical nanotechnology, nanobiotechnology, and nanomedicine are used to describe this hybrid field. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.
Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.
Nanotechnology has been a boon for the medical field by delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects can be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. This highly selective approach reduces costs and human suffering. An example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.
Nanotechnology can help reproduce or repair damaged tissue. “Tissue engineering” makes use of artificially stimulated cell proliferation by using suitable nanomaterial-based scaffolds and growth factors. For example, bones can be regrown on carbon nanotube scaffolds. Tissue engineering might replace today's conventional treatments like organ transplants or artificial implants. Advanced forms of tissue engineering may lead to life extension.
A strong influence of photochemistry on waste-water treatment, air purification and energy storage devices is to be expected. Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes. Nanofiltration is mainly used for the removal of ions or the separation of different fluids. On a larger scale, the membrane filtration technique is named ultrafiltration, which works down to between 10 and 100 nm. One important field of application for ultrafiltration is medical purposes as can be found in renal dialysis. Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.
A reduction of energy consumption can be reached by better insulation systems, by the use of more efficient lighting or combustion systems, and by use of lighter and stronger materials in the transportation sector. Currently used light bulbs only convert approximately 5% of the electrical energy into light. Nanotechnological approaches like light-emitting diodes (LEDs) or quantum caged atoms (QCAs) could lead to a strong reduction of energy consumption for illumination.
Today's best solar cells have layers of several different semiconductors stacked together to absorb light at different energies but they still only manage to use 40 percent of the Sun's energy. Commercially available solar cells have much lower efficiencies (15-20%). Nanotechnology could help increase the efficiency of light conversion by using nanostructures with a continuum of bandgaps.
The degree of efficiency of the internal combustion engine is about 30-40% at present. Nanotechnology could improve combustion by designing specific catalysts with maximized surface area. In 2005, scientists at the University of Toronto developed a spray-on nanoparticle substance that, when applied to a surface, instantly transforms it into a solar collector.
Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.
Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.
The production of displays with low energy consumption could be accomplished using carbon nanotubes (CNT). Carbon nanotubes are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.
Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.
Lighter and stronger materials will be of immense use to aircraft manufacturers, leading to increased performance. Spacecraft will also benefit, where weight is a major factor. Nanotechnology would help to reduce the size of equipment and thereby decrease fuel-consumption required to get it airborne.
Hang gliders may be able to halve their weight while increasing their strength and toughness through the use of nanotech materials. Nanotech is lowering the mass of supercapacitors that will increasingly be used to give power to assistive electrical motors for launching hang gliders off flatland to thermal-chasing altitudes.
Chemical catalysis benefits especially from nanoparticles, due to the extremely large surface to volume ratio. The application potential of nanoparticles in catalysis ranges from fuel cell to catalytic converters and photocatalytic devices. Catalysis is also important for the production of chemicals.
The synthesis provides novel materials with tailored features and chemical properties: for example, nanoparticles with a distinct chemical surrounding (ligands), or specific optical properties. In this sense, chemistry is indeed a basic nanoscience. In a short-term perspective, chemistry will provide novel “nanomaterials” and in the long run, superior processes such as “self-assembly” will enable energy and time preserving strategies. In a sense, all chemical synthesis can be understood in terms of nanotechnology, because of its ability to manufacture certain molecules. Thus, chemistry forms a base for nanotechnology providing tailor-made molecules, polymers, etcetera, as well as clusters and nanoparticles.
Nanotechnology has the potential to make construction faster, cheaper, safer, and more varied. Automation of nanotechnology construction can allow for the creation of structures from advanced homes to massive skyscrapers much more quickly and at much lower cost. In the near future Nanotechnology can be used to sense cracks in foundations of architecture and can send nanobots to repair them.
Nanotechnology is one of the most active research areas that encompass a number of disciplines Such as electronics, bio-mechanics and coatings including civil engineering and construction materials.
The use of nanotechnology in construction involves the development of new concept and understanding of the hydration of cement particles and the use of nano-size ingredients such as alumina and silica and other nanoparticles. The manufactures also investigating the methods of manufacturing of nano-cement. If cement with nano-size particles can be manufactured and processed, it will open up a large number of opportunities in the fields of ceramics, high strength composites and electronic applications. Since at the nanoscale the properties of the material are different from that of their bulk counter parts. When materials becomes nano-sized, the proportion of atoms on the surface increases relative to those inside and this leads to novel properties. Some applications of nanotechnology in construction are describe below.
Steel has been widely available material and has a major role in the construction industry. The use of nanotechnology in steel helps to improve the properties of steel. The fatigue, which led to the structural failure of steel due to cyclic loading, such as in bridges or towers.The current steel designs are based on the reduction in the allowable stress, service life or regular inspection regime. This has a significant impact on the life-cycle costs of structures and limits the effective use of resources.The Stress risers are responsible for initiating cracks from which fatigue failure results .The addition of copper nanoparticles reduces the surface un-evenness of steel which then limits the number of stress risers and hence fatigue cracking. Advancements in this technology using nanoparticles would lead to increased safety, less need for regular inspection regime and more efficient materials free from fatigue issues for construction.
The nano-size steel produce stronger steel cables which can be in bridge construction. Also these stronger cable material would reduce the costs and period of construction, especially in suspension bridges as the cables are run from end to end of the span. This would require high strength joints which leads to the need for high strength bolts. The capacity of high strength bolts is obtained through quenching and tempering. The microstructures of such products consist of tempered martensite. When the tensile strength of tempered martensite steel exceeds 1,200 MPa even a very small amount of hydrogen embrittles the grain boundaries and the steel material may fail during use. This phenomenon, which is known as delayed fracture, which hindered the strengthening of steel bolts and their highest strength is limited to only around 1,000 to 1,200 MPa.
Glass is also an important material in construction. Research is being carried out on the application of nanotechnology to glass. Titanium dioxide (TiO2) nanoparticles are used to coat glazing since it has sterilizing and anti-fouling properties. The particles catalyze powerful reactions which break down organic pollutants, volatile organic compounds and bacterial membranes. The TiO2 is hydrophilic (attraction to water) which can attract rain drops which then wash off the dirt particles. Thus the introduction of nanotechnology in the Glass industry, incorporates the self cleaning property of glass.
Fire-protective glass is another application of nanotechnology. This is achieved by using a clear intumescent layer sandwiched between glass panels (an interlayer) formed of silica nanoparticles (SiO2) which turns into a rigid and opaque fire shield when heated. Most of glass in construction is on the exterior surface of buildings. So the light and heat entering the building through glass has to be prevented. The nanotechnology can provide a better solution to block light and heat coming through windows.
Coatings is an important area in construction coatings are extensively use to paint the walls, doors, and windows. Coatings should provide a protective layer which is bound to the base material to produce a surface of the desired protective or functional properties. The coatings should have self healing capabilities through a process of “self-assembly.” Nanotechnology is being applied to paints to obtained the coatings having self healing capabilities and corrosion protection under insulation. Since these coatings are hydrophobic and repels water from the metal pipe and can also protect metal from salt water attack.Nanoparticle based systems can provide better adhesion and transparency. The TiO2 coating captures and breaks down organic and inorganic air pollutants by a photocatalytic process, which leads to putting roads to good environmental use.
Fire resistance of steel structures is often provided by a coating produced by a spray-on-cementitious process.The nano-cement has the potential to create a new paradigm in this area of application because the resulting material can be used as a tough, durable, high temperature coating. It provides a good method of increasing fire resistance and this is a cheaper option than conventional insulation.
Nanotechnology is already impacting the field of consumer goods, providing products with novel functions ranging from easy-to-clean to scratch-resistant. Modern textiles are wrinkle-resistant and stain-repellent; in the mid-term clothes will become “smart”, through embedded “wearable electronics”. Already in use are different nanoparticle improved products. Especially in the field of cosmetics, such novel products have a promising potential.
Complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film. Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods.
The most prominent application of nanotechnology in the household is self-cleaning or “easy-to-clean” surfaces on ceramics or glasses. Nano ceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron.
Wednesday, March 7, 2012
Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years.
Earth is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets. It is sometimes referred to as the world, the Blue Planet, or by its Latin name, Terra.
Earth formed approximately 4.54 billion years ago by accretion from the solar nebula, and life appeared on its surface within one billion years. The planet is home to millions of species, including humans. Earth's biosphere has significantly altered the atmosphere and other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. The planet is expected to continue supporting life for another 500 million to 2.3 billion years.
Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth's poles are mostly covered with solid ice (Antarctic ice sheet) or sea ice (Arctic ice cap). The planet's interior remains active, with a thick layer of relatively solid mantle, a liquid outer core that generates a magnetic field, and a solid iron inner core.
Earth interacts with other objects in space, especially the Sun and the Moon. At present, Earth orbits the Sun once every 366.26 times it rotates about its own axis, which is equal to 365.26 solar days, or one sidereal year.The Earth's axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days). Earth's only known natural satellite, the Moon, which began orbiting it about 4.53 billion years ago, provides ocean tides, stabilizes the axial tilt, and gradually slows the planet's rotation. Between approximately 3.8 billion and 4.1 billion years ago, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment.
Both the mineral resources of the planet and the products of the biosphere contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states (193 United Nations recognized sovereign states), which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including personification as a deity, a belief in a flat Earth or in the Earth as the center of the universe, and a modern perspective of the world as an integrated environment that requires stewardship.
Earth formed approximately 4.54 billion years ago by accretion from the solar nebula, and life appeared on its surface within one billion years. The planet is home to millions of species, including humans. Earth's biosphere has significantly altered the atmosphere and other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land. The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. The planet is expected to continue supporting life for another 500 million to 2.3 billion years.
Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered by salt water oceans, with the remainder consisting of continents and islands which together have many lakes and other sources of water that contribute to the hydrosphere. Earth's poles are mostly covered with solid ice (Antarctic ice sheet) or sea ice (Arctic ice cap). The planet's interior remains active, with a thick layer of relatively solid mantle, a liquid outer core that generates a magnetic field, and a solid iron inner core.
Earth interacts with other objects in space, especially the Sun and the Moon. At present, Earth orbits the Sun once every 366.26 times it rotates about its own axis, which is equal to 365.26 solar days, or one sidereal year.The Earth's axis of rotation is tilted 23.4° away from the perpendicular of its orbital plane, producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days). Earth's only known natural satellite, the Moon, which began orbiting it about 4.53 billion years ago, provides ocean tides, stabilizes the axial tilt, and gradually slows the planet's rotation. Between approximately 3.8 billion and 4.1 billion years ago, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment.
Both the mineral resources of the planet and the products of the biosphere contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states (193 United Nations recognized sovereign states), which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including personification as a deity, a belief in a flat Earth or in the Earth as the center of the universe, and a modern perspective of the world as an integrated environment that requires stewardship.
Mercury
The innermost planet in the Solar System is a dense, heavily cratered world that takes about 59 Earth days to fully rotate on its own axis as it travels on its 88-day journey around the Sun.
It is possible to see Mercury from the Earth without a telescope or binoculars though its closeness to the Sun's bright light can make it difficult to spot.
Photographed and studied at close range by the Mariner 10 and Messenger probes, Mercury is blasted by solar radiation and is not thought to be a likely place for life to flourish.
Find out more about the other planets in the Solar System
It is possible to see Mercury from the Earth without a telescope or binoculars though its closeness to the Sun's bright light can make it difficult to spot.
Photographed and studied at close range by the Mariner 10 and Messenger probes, Mercury is blasted by solar radiation and is not thought to be a likely place for life to flourish.
Find out more about the other planets in the Solar System
Cyclone Elita
Tropical cyclone Elita formed just off the west coast of the island of Madagascar in the Mozambique Channel on 26 January 2004 as a minimal tropical storm with winds estimated at around 40 mph by the Joint Typhoon Warning Center. Elita then slowly meandered towards the northeast along the coastline of Madagascar before turning southeast and coming ashore on the 29th near the coastal town of Mahajanga on the northwestern coast of Madagascar. One person was reported killed by the storm and numerous houses and buildings were destroyed in the town.
Cyclone Elita was an unusual tropical cyclone that made landfall on Madagascar three times. Elita developed in the Mozambique Channel on January 24, 2004. It strengthened to become a tropical cyclone before striking northwestern Madagascar on January 28. Elita weakened to tropical depression status while crossing the island, and after exiting into the southwest Indian Ocean it turned to the west and moved ashore for a second time on January 31 in eastern Madagascar. After crossing the island, the cyclone intensified again after reaching the Mozambique Channel, and Elita turned to the southeast to make its final landfall on February 3 along southwestern Madagascar. Elita dropped heavy rainfall of over 200 mm (8 inches), which damaged or destroyed thousands of houses in Madagascar. Over 50,000 people were left homeless, primarily in Mahajanga and Toliara provinces. Flooding from the storm damaged or destroyed more than 450 km2 (170 sq mi) of agricultural land, including important crops for food. Across the island, the cyclone caused at least 33 deaths. Elsewhere, the cyclone brought rainfall and damage to Mozambique and Malawi, while its outer circulation produced rough seas and strong winds in Seychelles, Mauritius, and Réunion.
Cyclone Elita was an unusual tropical cyclone that made landfall on Madagascar three times. Elita developed in the Mozambique Channel on January 24, 2004. It strengthened to become a tropical cyclone before striking northwestern Madagascar on January 28. Elita weakened to tropical depression status while crossing the island, and after exiting into the southwest Indian Ocean it turned to the west and moved ashore for a second time on January 31 in eastern Madagascar. After crossing the island, the cyclone intensified again after reaching the Mozambique Channel, and Elita turned to the southeast to make its final landfall on February 3 along southwestern Madagascar. Elita dropped heavy rainfall of over 200 mm (8 inches), which damaged or destroyed thousands of houses in Madagascar. Over 50,000 people were left homeless, primarily in Mahajanga and Toliara provinces. Flooding from the storm damaged or destroyed more than 450 km2 (170 sq mi) of agricultural land, including important crops for food. Across the island, the cyclone caused at least 33 deaths. Elsewhere, the cyclone brought rainfall and damage to Mozambique and Malawi, while its outer circulation produced rough seas and strong winds in Seychelles, Mauritius, and Réunion.
Intelsat
In 1965, Intelsat established the first commercial global satellite communications system. For the first time, people, businesses and governments could communicate instantly, reliably and simultaneously from all corners of the globe. NASA put a man on the moon--and the world watched it happen via Intelsat.
With major milestones such as our 2001 privatization and 2006 acquisition of PanAmSat, Intelsat and our culture of leadership and technical excellence has established satellite communications as an essential element of the global telecommunications infrastructure.
International Telecommunications Satellite Organization (INTELSAT), it was—from 1964 to 2001—an intergovernmental consortium owning and managing a constellation of communications satellites providing international broadcast services.
With major milestones such as our 2001 privatization and 2006 acquisition of PanAmSat, Intelsat and our culture of leadership and technical excellence has established satellite communications as an essential element of the global telecommunications infrastructure.
International Telecommunications Satellite Organization (INTELSAT), it was—from 1964 to 2001—an intergovernmental consortium owning and managing a constellation of communications satellites providing international broadcast services.
Tuesday, March 6, 2012
Code Division Multiple Access.
CDMA stands for Code Division Multiple Access. It is a technique used for digital communication, and wireless technology in particular, that involves multiplexing. Whereas conventional communication systems use constant frequencies, CDMA uses multiple access, or multiplexing. Accomplished through the specific type known as spread spectrum in this case, multiplexing uses varied frequencies to transmit audio signals. This, coupled with code division, which requires a certain code to send and receive the frequency, further protects CDMA communications from interference.
Radio systems, one of the earliest forms of telecommunication, required users to communicate on distinct frequencies. Frequency Division Multiple Access (FDMA), one form of early wireless communication, only allowed users to operate on a single frequency. When tuning in to a radio to get sound, for instance, the listener must select one frequency or another, and must tune the frequency to filter out noise in the spectrum. Another form of early radio communication was Time Division Multiple Access (TDMA). In this case, users could not share a frequency, and each user had to coordinate his or her turn on that frequency in order to communicate.
Both FDMA and TDMA posed restrictions for early users, particularly the military. As early as World War II, militaries recognized the high value in using wireless technology to communicate across vast distances. Military communication units did not always have the time to wait their turn to transmit sound, or to find the right frequency.
Some telecommunication systems allowed military communication units to transmit sound into the same spectrum their adversaries used. Military signals needed a unique identification through a distinct code to avoid interference from enemy communication. The receiver of that message on the other end could then retrieve the message based on its unique code in the spectrum.
Just as the radio moved from military use to commercial use, so too was the case with the wireless technology. CDMA became the early choice for personal communication because it could allow multiple users to communicate within the spectrum, avoiding interference or blocking among users. In 1999, CDMA became the standard technology for the telecommunications industry for its growing wireless systems. Since there are large numbers of users in the system communicating at the same time, code division ensures that each user’s signal remains separate in the spectrum.
Radio systems, one of the earliest forms of telecommunication, required users to communicate on distinct frequencies. Frequency Division Multiple Access (FDMA), one form of early wireless communication, only allowed users to operate on a single frequency. When tuning in to a radio to get sound, for instance, the listener must select one frequency or another, and must tune the frequency to filter out noise in the spectrum. Another form of early radio communication was Time Division Multiple Access (TDMA). In this case, users could not share a frequency, and each user had to coordinate his or her turn on that frequency in order to communicate.
Both FDMA and TDMA posed restrictions for early users, particularly the military. As early as World War II, militaries recognized the high value in using wireless technology to communicate across vast distances. Military communication units did not always have the time to wait their turn to transmit sound, or to find the right frequency.
Some telecommunication systems allowed military communication units to transmit sound into the same spectrum their adversaries used. Military signals needed a unique identification through a distinct code to avoid interference from enemy communication. The receiver of that message on the other end could then retrieve the message based on its unique code in the spectrum.
Just as the radio moved from military use to commercial use, so too was the case with the wireless technology. CDMA became the early choice for personal communication because it could allow multiple users to communicate within the spectrum, avoiding interference or blocking among users. In 1999, CDMA became the standard technology for the telecommunications industry for its growing wireless systems. Since there are large numbers of users in the system communicating at the same time, code division ensures that each user’s signal remains separate in the spectrum.
Digital Versatile Disc — Read Only Memory
A Digital Versatile Disc — Read Only Memory, or DVD-ROM, is a media storage disk that closely resembles a CD or compact disk. The major difference is that the DVD-ROM is formatted to hold far more data. A CD commonly has a capacity of 650 megabytes, while the smallest capacity DVD can store about seven times more data, or 4.38 gigabytes (GB).
There are various kinds of DVDs, but the DVD-ROM refers to a read-only disc, or a disc that cannot be written over. If you purchase a DVD movie from the local video store, you have a good example of a DVD-ROM. Blank DVDs with designations like "DVD-R" and "DVD+R" are formatted, recordable DVDs. The —R and +R refer to competing format standards, but both will record movies, audio or other data.
A DVD-ROM encodes data in the form of a spiraling trail of pits and lands separated by mere nanometers. The trail starts at the center of the DVD-ROM and winds around countless times until it reaches the outer edge. In the case of a double layer disk, the trail continues on a second layer of material. If the disc is also double-sided, the trail of pits and lands extends to side two.
A laser beam in the DVD player tracks the beam as the disc spins, while a special device reads the intensity of the reflection as it bounces off the pits and lands. The reflective variance gets translated to bits of data which form bytes. Hence, DVDs, including the DVD-ROM, can vary in capacity as follows:
Single-sided single-layer disc — 4.38 GB
Single-sided double-layer disc — 7.95 GB
Double-sided single-layer disc — 8.75 GB
Double-sided double-layer disc — 15.9 GB
The DVD-ROM has replaced the videocassette, being far more efficient and superior in all respects. For one, a DVD-ROM stores data in digital form, while the videocassette uses less precise analog technology. A DVD-ROM, under normal conditions, remains error free and consistent, regardless of the amount of times it is viewed, while a video cassette stretches with wear and eventually needs replacement. The DVD-ROM can also hold more information in a higher format, and one can skip to specific scenes without the need for fast-forwarding or rewinding. Finally, the DVD-ROM is much more compact and easier to store, and DVD players can double as CD players.
If purchasing a DVD player, be sure to get one that can play all DVD-ROM formats, including double-sided, double-layered discs. For home theater systems look for models equipped with a 192 kilohertz (kHz), 24-bit digital/analog converter (DAC) for true Dolby theater quality. By comparison, standard DVD players use 96 kHz, 24-bit DACs. This is still a big improvement over CDs, however, which use 44.1 kHz, 16-bit sampling to produce audio. For this reason, people are moving towards DVDs to store music. An audio DVD can hold just over an hour of multi-channel music at 192 kHz, the highest bit rate; about two hours at 96 kHz; and close to seven hours at the standard CD sampling rate of 44.1 kHz.
While cassettes, videocassettes and laser diskc have become legacy technologies, the DVD-ROM appears to be here to stay. Recordable DVDs are available wherever music and movies are sold, including department stores, office supply chains and discount marts.
There are various kinds of DVDs, but the DVD-ROM refers to a read-only disc, or a disc that cannot be written over. If you purchase a DVD movie from the local video store, you have a good example of a DVD-ROM. Blank DVDs with designations like "DVD-R" and "DVD+R" are formatted, recordable DVDs. The —R and +R refer to competing format standards, but both will record movies, audio or other data.
A DVD-ROM encodes data in the form of a spiraling trail of pits and lands separated by mere nanometers. The trail starts at the center of the DVD-ROM and winds around countless times until it reaches the outer edge. In the case of a double layer disk, the trail continues on a second layer of material. If the disc is also double-sided, the trail of pits and lands extends to side two.
A laser beam in the DVD player tracks the beam as the disc spins, while a special device reads the intensity of the reflection as it bounces off the pits and lands. The reflective variance gets translated to bits of data which form bytes. Hence, DVDs, including the DVD-ROM, can vary in capacity as follows:
Single-sided single-layer disc — 4.38 GB
Single-sided double-layer disc — 7.95 GB
Double-sided single-layer disc — 8.75 GB
Double-sided double-layer disc — 15.9 GB
The DVD-ROM has replaced the videocassette, being far more efficient and superior in all respects. For one, a DVD-ROM stores data in digital form, while the videocassette uses less precise analog technology. A DVD-ROM, under normal conditions, remains error free and consistent, regardless of the amount of times it is viewed, while a video cassette stretches with wear and eventually needs replacement. The DVD-ROM can also hold more information in a higher format, and one can skip to specific scenes without the need for fast-forwarding or rewinding. Finally, the DVD-ROM is much more compact and easier to store, and DVD players can double as CD players.
If purchasing a DVD player, be sure to get one that can play all DVD-ROM formats, including double-sided, double-layered discs. For home theater systems look for models equipped with a 192 kilohertz (kHz), 24-bit digital/analog converter (DAC) for true Dolby theater quality. By comparison, standard DVD players use 96 kHz, 24-bit DACs. This is still a big improvement over CDs, however, which use 44.1 kHz, 16-bit sampling to produce audio. For this reason, people are moving towards DVDs to store music. An audio DVD can hold just over an hour of multi-channel music at 192 kHz, the highest bit rate; about two hours at 96 kHz; and close to seven hours at the standard CD sampling rate of 44.1 kHz.
While cassettes, videocassettes and laser diskc have become legacy technologies, the DVD-ROM appears to be here to stay. Recordable DVDs are available wherever music and movies are sold, including department stores, office supply chains and discount marts.
TFT monitor
A TFT monitor uses thin-film transistor technology for the ultimate LCD display. LCD monitors, also called flat panel displays, are replacing the old style cathode ray tubes (CRTs) as the displays of choice. Nearly all LCD monitors today use TFT technology.
The benefit of a TFT monitor is a separate, tiny transistor for each pixel on the display. Because each transistor is so small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display, as the image is re-painted or refreshed several times per second.
Prior to TFT, passive matrix LCD displays could not keep up with fast moving images. A mouse dragged across the screen, for example, from point A to point B, would disappear between the two points. A TFT monitor can track the mouse, resulting in a display that can be used for video, gaming and all forms of multimedia.
The benefit of a TFT monitor is a separate, tiny transistor for each pixel on the display. Because each transistor is so small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display, as the image is re-painted or refreshed several times per second.
Prior to TFT, passive matrix LCD displays could not keep up with fast moving images. A mouse dragged across the screen, for example, from point A to point B, would disappear between the two points. A TFT monitor can track the mouse, resulting in a display that can be used for video, gaming and all forms of multimedia.
Saturday, February 25, 2012
Monday, February 13, 2012
The "Ring of Fire" is an arc stretching from New Zealand, along the eastern edge of Asia, north across the Aleutian Islands of Alaska, and south along the coast of North and South America.
The "Ring of Fire" is an arc stretching from New Zealand, along the eastern edge of Asia, north across the Aleutian Islands of Alaska, and south along the coast of North and South America. The Ring of Fire is composed over 75% of the world's active and dormant volcanoes.
This huge ring of volcanic and seismic (earthquake) activity was noticed and described before the invention of the theory of plate tectonics theory. We now know that the Ring of Fire is located at the borders of the Pacific Plate and other major tectonic plates.
Plates are like giant rafts of the earth's surface which often slide next to, collide with, and are forced underneath other plates. Around the Ring of Fire, the Pacific Plate is colliding with and sliding underneath other plates. This process is known as subduction and the volcanically and seismically active area nearby is known as a subduction zone. There is a tremendous amount of energy created by these plates and they easily melt rock into magma, which rises to the surface as lava and forms volcanoes.
Volcanoes are temporary features on the earth's surface and there are currently about 1500 active volcanoes in the world. About ten percent of these are located in the United States.
This is a listing of major volcanic areas in the Ring of Fire:
In South America the Nazca plate is colliding with the South American plate. This has created the Andes and volcanoes such as Cotopaxi and Azul.
In Central America, the tiny Cocos plate is crashing into the North American plate and is therefore responsible for the Mexican volcanoes of Popocatepetl and Paricutun (which rose up from a cornfield in 1943 and became a instant mountains).
Between Northern California and British Columbia, the Pacific, Juan de Fuca, and Gorda plates have built the Cascades and the infamous Mount Saint Helens, which erupted in 1980.
Alaska's Aleutian Islands are growing as the Pacific plate hits the North American plate. The deep Aleutian Trench has been created at the subduction zone with a maximum depth of 25,194 feet (7679 meters).
From Russia's Kamchatka Peninsula to Japan, the subduction of the Pacific plate under the Eurasian plate is responsible for Japanese islands and volcanoes (such as Mt. Fuji).
The final section of the Ring of Fire exists where the Indo-Australian plate subducts under the Pacific plate and has created volcanoes in the New Guinea and Micronesian areas. Near New Zealand, the Pacific Plate slides under the Indo-Australian plate.
This huge ring of volcanic and seismic (earthquake) activity was noticed and described before the invention of the theory of plate tectonics theory. We now know that the Ring of Fire is located at the borders of the Pacific Plate and other major tectonic plates.
Plates are like giant rafts of the earth's surface which often slide next to, collide with, and are forced underneath other plates. Around the Ring of Fire, the Pacific Plate is colliding with and sliding underneath other plates. This process is known as subduction and the volcanically and seismically active area nearby is known as a subduction zone. There is a tremendous amount of energy created by these plates and they easily melt rock into magma, which rises to the surface as lava and forms volcanoes.
Volcanoes are temporary features on the earth's surface and there are currently about 1500 active volcanoes in the world. About ten percent of these are located in the United States.
This is a listing of major volcanic areas in the Ring of Fire:
In South America the Nazca plate is colliding with the South American plate. This has created the Andes and volcanoes such as Cotopaxi and Azul.
In Central America, the tiny Cocos plate is crashing into the North American plate and is therefore responsible for the Mexican volcanoes of Popocatepetl and Paricutun (which rose up from a cornfield in 1943 and became a instant mountains).
Between Northern California and British Columbia, the Pacific, Juan de Fuca, and Gorda plates have built the Cascades and the infamous Mount Saint Helens, which erupted in 1980.
Alaska's Aleutian Islands are growing as the Pacific plate hits the North American plate. The deep Aleutian Trench has been created at the subduction zone with a maximum depth of 25,194 feet (7679 meters).
From Russia's Kamchatka Peninsula to Japan, the subduction of the Pacific plate under the Eurasian plate is responsible for Japanese islands and volcanoes (such as Mt. Fuji).
The final section of the Ring of Fire exists where the Indo-Australian plate subducts under the Pacific plate and has created volcanoes in the New Guinea and Micronesian areas. Near New Zealand, the Pacific Plate slides under the Indo-Australian plate.
Sunday, February 12, 2012
Some 80 percent of all the planet's earthquakes occur along the rim of the Pacific Ocean, called the "Ring of Fire" because of the preponderance of volcanic activity there as well.
Earthquakes, also called temblors, can be so tremendously destructive, it’s hard to imagine they occur by the thousands every day around the world, usually in the form of small tremors.
Some 80 percent of all the planet's earthquakes occur along the rim of the Pacific Ocean, called the "Ring of Fire" because of the preponderance of volcanic activity there as well. Most earthquakes occur at fault zones, where tectonic plates—giant rock slabs that make up the Earth's upper layer—collide or slide against each other. These impacts are usually gradual and unnoticeable on the surface; however, immense stress can build up between plates. When this stress is released quickly, it sends massive vibrations, called seismic waves, often hundreds of miles through the rock and up to the surface. Other quakes can occur far from faults zones when plates are stretched or squeezed.
Scientists assign a magnitude rating to earthquakes based on the strength and duration of their seismic waves. A quake measuring 3 to 5 is considered minor or light; 5 to 7 is moderate to strong; 7 to 8 is major; and 8 or more is great.
On average, a magnitude 8 quake strikes somewhere every year and some 10,000 people die in earthquakes annually. Collapsing buildings claim by far the majority of lives, but the destruction is often compounded by mud slides, fires, floods, or tsunamis. Smaller temblors that usually occur in the days following a large earthquake can complicate rescue efforts and cause further death and destruction.
Loss of life can be avoided through emergency planning, education, and the construction of buildings that sway rather than break under the stress of an earthquake.
Some 80 percent of all the planet's earthquakes occur along the rim of the Pacific Ocean, called the "Ring of Fire" because of the preponderance of volcanic activity there as well. Most earthquakes occur at fault zones, where tectonic plates—giant rock slabs that make up the Earth's upper layer—collide or slide against each other. These impacts are usually gradual and unnoticeable on the surface; however, immense stress can build up between plates. When this stress is released quickly, it sends massive vibrations, called seismic waves, often hundreds of miles through the rock and up to the surface. Other quakes can occur far from faults zones when plates are stretched or squeezed.
Scientists assign a magnitude rating to earthquakes based on the strength and duration of their seismic waves. A quake measuring 3 to 5 is considered minor or light; 5 to 7 is moderate to strong; 7 to 8 is major; and 8 or more is great.
On average, a magnitude 8 quake strikes somewhere every year and some 10,000 people die in earthquakes annually. Collapsing buildings claim by far the majority of lives, but the destruction is often compounded by mud slides, fires, floods, or tsunamis. Smaller temblors that usually occur in the days following a large earthquake can complicate rescue efforts and cause further death and destruction.
Loss of life can be avoided through emergency planning, education, and the construction of buildings that sway rather than break under the stress of an earthquake.
SCIENCE AND TECHNOLOGY: Some impacts from increasing temperatures are alre...
SCIENCE AND TECHNOLOGY: Some impacts from increasing temperatures are alre...: The planet is warming, from North Pole to South Pole, and everywhere in between. Globally, the mercury is already up more than 1 degree Fahr...
Some impacts from increasing temperatures are already happening.
The planet is warming, from North Pole to South Pole, and everywhere in between. Globally, the mercury is already up more than 1 degree Fahrenheit (0.8 degree Celsius), and even more in sensitive polar regions. And the effects of rising temperatures aren’t waiting for some far-flung future. They’re happening right now. Signs are appearing all over, and some of them are surprising. The heat is not only melting glaciers and sea ice, it’s also shifting precipitation patterns and setting animals on the move.
Some impacts from increasing temperatures are already happening.
Ice is melting worldwide, especially at the Earth’s poles. This includes mountain glaciers, ice sheets covering West Antarctica and Greenland, and Arctic sea ice.
Researcher Bill Fraser has tracked the decline of the Adélie penguins on Antarctica, where their numbers have fallen from 32,000 breeding pairs to 11,000 in 30 years.
Sea level rise became faster over the last century.
Some butterflies, foxes, and alpine plants have moved farther north or to higher, cooler areas.
Precipitation (rain and snowfall) has increased across the globe, on average.
Spruce bark beetles have boomed in Alaska thanks to 20 years of warm summers. The insects have chewed up 4 million acres of spruce trees.
Other effects could happen later this century, if warming continues.
Sea levels are expected to rise between 7 and 23 inches (18 and 59 centimeters) by the end of the century, and continued melting at the poles could add between 4 and 8 inches (10 to 20 centimeters).
Hurricanes and other storms are likely to become stronger.
Species that depend on one another may become out of sync. For example, plants could bloom earlier than their pollinating insects become active.
Floods and droughts will become more common. Rainfall in Ethiopia, where droughts are already common, could decline by 10 percent over the next 50 years.
Less fresh water will be available. If the Quelccaya ice cap in Peru continues to melt at its current rate, it will be gone by 2100, leaving thousands of people who rely on it for drinking water and electricity without a source of either.
Some diseases will spread, such as malaria carried by mosquitoes.
Ecosystems will change—some species will move farther north or become more successful; others won’t be able to move and could become extinct. Wildlife research scientist Martyn Obbard has found that since the mid-1980s, with less ice on which to live and fish for food, polar bears have gotten considerably skinnier. Polar bear biologist Ian Stirling has found a similar pattern in Hudson Bay. He fears that if sea ice disappears, the polar bears will as well.
Source for climate information: IPCC, 2007
Some impacts from increasing temperatures are already happening.
Ice is melting worldwide, especially at the Earth’s poles. This includes mountain glaciers, ice sheets covering West Antarctica and Greenland, and Arctic sea ice.
Researcher Bill Fraser has tracked the decline of the Adélie penguins on Antarctica, where their numbers have fallen from 32,000 breeding pairs to 11,000 in 30 years.
Sea level rise became faster over the last century.
Some butterflies, foxes, and alpine plants have moved farther north or to higher, cooler areas.
Precipitation (rain and snowfall) has increased across the globe, on average.
Spruce bark beetles have boomed in Alaska thanks to 20 years of warm summers. The insects have chewed up 4 million acres of spruce trees.
Other effects could happen later this century, if warming continues.
Sea levels are expected to rise between 7 and 23 inches (18 and 59 centimeters) by the end of the century, and continued melting at the poles could add between 4 and 8 inches (10 to 20 centimeters).
Hurricanes and other storms are likely to become stronger.
Species that depend on one another may become out of sync. For example, plants could bloom earlier than their pollinating insects become active.
Floods and droughts will become more common. Rainfall in Ethiopia, where droughts are already common, could decline by 10 percent over the next 50 years.
Less fresh water will be available. If the Quelccaya ice cap in Peru continues to melt at its current rate, it will be gone by 2100, leaving thousands of people who rely on it for drinking water and electricity without a source of either.
Some diseases will spread, such as malaria carried by mosquitoes.
Ecosystems will change—some species will move farther north or become more successful; others won’t be able to move and could become extinct. Wildlife research scientist Martyn Obbard has found that since the mid-1980s, with less ice on which to live and fish for food, polar bears have gotten considerably skinnier. Polar bear biologist Ian Stirling has found a similar pattern in Hudson Bay. He fears that if sea ice disappears, the polar bears will as well.
Source for climate information: IPCC, 2007
Acid rain describes any form of precipitation with high levels of nitric and sulfuric acids. It can also occur in the form of snow, fog, and tiny bits of dry material that settle to Earth.
Acid rain describes any form of precipitation with high levels of nitric and sulfuric acids. It can also occur in the form of snow, fog, and tiny bits of dry material that settle to Earth.
Rotting vegetation and erupting volcanoes release some chemicals that can cause acid rain, but most acid rain falls because of human activities. The biggest culprit is the burning of fossil fuels by coal-burning power plants, factories, and automobiles.
When humans burn fossil fuels, sulfur dioxide (SO2) and nitrogen oxides (NOx) are released into the atmosphere. These chemical gases react with water, oxygen, and other substances to form mild solutions of sulfuric and nitric acid. Winds may spread these acidic solutions across the atmosphere and over hundreds of miles. When acid rain reaches Earth, it flows across the surface in runoff water, enters water systems, and sinks into the soil.
Acid rain has many ecological effects, but none is greater than its impact on lakes, streams, wetlands, and other aquatic environments. Acid rain makes waters acidic and causes them to absorb the aluminum that makes its way from soil into lakes and streams. This combination makes waters toxic to crayfish, clams, fish, and other aquatic animals.
Some species can tolerate acidic waters better than others. However, in an interconnected ecosystem, what impacts some species eventually impacts many more throughout the food chain—including non-aquatic species such as birds.
Acid rain also damages forests, especially those at higher elevations. It robs the soil of essential nutrients and releases aluminum in the soil, which makes it hard for trees to take up water. Trees' leaves and needles are also harmed by acids.
The effects of acid rain, combined with other environmental stressors, leave trees and plants less able to withstand cold temperatures, insects, and disease. The pollutants may also inhibit trees' ability to reproduce. Some soils are better able to neutralize acids than others. In areas where the soil's "buffering capacity" is low, the harmful effects of acid rain are much greater.
The only way to fight acid rain is by curbing the release of the pollutants that cause it. This means burning fewer fossil fuels. Many governments have tried to curb emissions by cleaning up industry smokestacks and promoting alternative fuel sources. These efforts have met with mixed results. But even if acid rain could be stopped today, it would still take many years for its harmful effects to disappear.
Individuals can also help prevent acid rain by conserving energy. The less electricity people use in their homes, the fewer chemicals power plants will emit. Vehicles are also major fossil fuel users, so drivers can reduce emissions by using public transportation, carpooling, biking, or simply walking wherever possible.
Rotting vegetation and erupting volcanoes release some chemicals that can cause acid rain, but most acid rain falls because of human activities. The biggest culprit is the burning of fossil fuels by coal-burning power plants, factories, and automobiles.
When humans burn fossil fuels, sulfur dioxide (SO2) and nitrogen oxides (NOx) are released into the atmosphere. These chemical gases react with water, oxygen, and other substances to form mild solutions of sulfuric and nitric acid. Winds may spread these acidic solutions across the atmosphere and over hundreds of miles. When acid rain reaches Earth, it flows across the surface in runoff water, enters water systems, and sinks into the soil.
Acid rain has many ecological effects, but none is greater than its impact on lakes, streams, wetlands, and other aquatic environments. Acid rain makes waters acidic and causes them to absorb the aluminum that makes its way from soil into lakes and streams. This combination makes waters toxic to crayfish, clams, fish, and other aquatic animals.
Some species can tolerate acidic waters better than others. However, in an interconnected ecosystem, what impacts some species eventually impacts many more throughout the food chain—including non-aquatic species such as birds.
Acid rain also damages forests, especially those at higher elevations. It robs the soil of essential nutrients and releases aluminum in the soil, which makes it hard for trees to take up water. Trees' leaves and needles are also harmed by acids.
The effects of acid rain, combined with other environmental stressors, leave trees and plants less able to withstand cold temperatures, insects, and disease. The pollutants may also inhibit trees' ability to reproduce. Some soils are better able to neutralize acids than others. In areas where the soil's "buffering capacity" is low, the harmful effects of acid rain are much greater.
The only way to fight acid rain is by curbing the release of the pollutants that cause it. This means burning fewer fossil fuels. Many governments have tried to curb emissions by cleaning up industry smokestacks and promoting alternative fuel sources. These efforts have met with mixed results. But even if acid rain could be stopped today, it would still take many years for its harmful effects to disappear.
Individuals can also help prevent acid rain by conserving energy. The less electricity people use in their homes, the fewer chemicals power plants will emit. Vehicles are also major fossil fuel users, so drivers can reduce emissions by using public transportation, carpooling, biking, or simply walking wherever possible.
The term ‘acid rain’ means any form of precipitation like rain, fog, snow, or hail that contains harmful substances such as nitrogen and sulfur oxides.
The term ‘acid rain’ means any form of precipitation like rain, fog, snow, or hail that contains harmful substances such as nitrogen and sulfur oxides. The major human sources do come from the industry, transportation, and a variety of power plants. Strictly speaking these industrial amounts of nitrogen, sulfur oxides and general pollutants from the air cause a drastic increase of the acidity of the precipitation and do also harm plants, humans, and buildings.
In order to save the climate and to protect the general air quality the Air Pollution & Climate Secretariat, formerly known as the Swedish NGO Secretariat in Acid Rain, tries to promote awareness of the variety of problems being associated with air pollution. Strictly speaking the Air Pollution & Climate Secretariat is a joint venture between five Swedish environmental organizations. This secretariat operates with the chief purpose to achieve the required reduction of the emission of air and industrial pollutants, including greenhouse gases. Consequently those emissions should be brought down to a level that our environment and nature are able to tolerate without suffering any damage regarding plants, buildings, and humans.
Fact is that air pollution affects both humans and the nature. Most obvious are the so-called direct effects on human health. Results of recent research show that small particles in the air caused more than 350,000 premature deaths within the 25 countries of the European Union in 2000. Furthermore it has to be taken into consideration that there are also other air pollutants as well as indirect effects on nature and humans. Those indirect effects include effects such as toxic groundwater and corrosion of materials. Many people use so-called blinds and/or marquees, also called Markisen in German, in order to protect for instance their terrace or patio from polluted air particles.
Due to drastic air pollution and the worsening of the general air quality, the climate does also get affected. If the climate gets warmer it affects a human’s health. A number of researchers fear that a warmer climate in the course of a general climate change may cause more extreme weather conditions. Strictly speaking this would also lead to more injuries and deaths being caused by hurricanes, flooding as well as to property damage. Another effect resulting from a warmer climate is the spread of a variety of insect transmitted diseases such as malaria and bilharzias.
In order to save the climate and to protect the general air quality the Air Pollution & Climate Secretariat, formerly known as the Swedish NGO Secretariat in Acid Rain, tries to promote awareness of the variety of problems being associated with air pollution. Strictly speaking the Air Pollution & Climate Secretariat is a joint venture between five Swedish environmental organizations. This secretariat operates with the chief purpose to achieve the required reduction of the emission of air and industrial pollutants, including greenhouse gases. Consequently those emissions should be brought down to a level that our environment and nature are able to tolerate without suffering any damage regarding plants, buildings, and humans.
Fact is that air pollution affects both humans and the nature. Most obvious are the so-called direct effects on human health. Results of recent research show that small particles in the air caused more than 350,000 premature deaths within the 25 countries of the European Union in 2000. Furthermore it has to be taken into consideration that there are also other air pollutants as well as indirect effects on nature and humans. Those indirect effects include effects such as toxic groundwater and corrosion of materials. Many people use so-called blinds and/or marquees, also called Markisen in German, in order to protect for instance their terrace or patio from polluted air particles.
Due to drastic air pollution and the worsening of the general air quality, the climate does also get affected. If the climate gets warmer it affects a human’s health. A number of researchers fear that a warmer climate in the course of a general climate change may cause more extreme weather conditions. Strictly speaking this would also lead to more injuries and deaths being caused by hurricanes, flooding as well as to property damage. Another effect resulting from a warmer climate is the spread of a variety of insect transmitted diseases such as malaria and bilharzias.
Subscribe to:
Posts (Atom)